Characterization of glass frit capillary pumps for microfluidic devices

  • Matthew Rich
  • Omar Mohd
  • Frances S. Ligler
  • Glenn M. WalkerEmail author
Short Communication


Here, we report on a low-cost, disposable microfluidic pump made from sieved glass particles. The pump overcomes the limitations of other passive pumping methods and can handle whole blood, which makes it useful for point-of-care diagnostics. Flow rates of up to 8.7 µL/s and pumping volumes of up to 1 mL were demonstrated, but both can be adjusted by changing pump geometry and particle size. Finally, we demonstrate utility of this pump by attaching it to a commercially available point-of-care immunoassay system from mBio Diagnostics and demonstrating improved binding efficiencies with flow.


Porous Glass Capillary forces Pump Microfluidic Point-of-care 



This work was supported by the North Carolina State University Chancellors Innovation Fund, the North Carolina Biotechnology Center Technology Enhancement Grant, and the Ross Lampe Chair in Biomedical Engineering at North Carolina State University.

Supplementary material

10404_2019_2238_MOESM1_ESM.docx (135 kb)
Supplementary material 1 (DOCX 135 kb)


  1. Berry SB, Fernandes SC, Rajaratnam A, DeChiara NS, Mace CR (2016) Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 16:3689–3694CrossRefGoogle Scholar
  2. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134CrossRefGoogle Scholar
  3. Chumo B, Muluneh M, Issadore D (2013) Laser micromachined hybrid open/paper microfluidic chips. Biomicrofluidics 7:064109CrossRefGoogle Scholar
  4. Cummins BM, Chinthapatla R, Lenin B, Ligler FS, Walker GM (2017a) Modular pumps as programmable hydraulic batteries for microfluidic devices. Technology 5:21–30CrossRefGoogle Scholar
  5. Cummins BM, Chinthapatla R, Ligler FS, Walker GM (2017b) Time-dependent model for fluid flow in porous materials with multiple pore sizes. Anal Chem 89:4377–4381CrossRefGoogle Scholar
  6. Hrncír E, Rosina J (1997) Surface tension of blood. Physiol Res 46:319–321Google Scholar
  7. Klein J (2015) Additive manufacturing of optically transparent glass. MS Thesis, Massachusetts Institute of Technology, Cambridge, MA, USACrossRefGoogle Scholar
  8. Kokalj T, Park Y, Vencelj M, Jenko M, Lee LP (2014) Self-powered imbibing microfluidic pump by liquid encapsulation: SIMPLE. Lab Chip 14:4329–4333CrossRefGoogle Scholar
  9. Lee S, Kim H, Lee W, Kim J (2018) Finger-triggered portable PDMS suction cup for equipment-free microfluidic pumping. Micro Nano Syst Lett 6:1CrossRefGoogle Scholar
  10. Lenormand R, Touboul E, Zarcone C (1988) Numerical models and experiments on immiscible displacements in porous media. J Fluid Mech 189:165–187CrossRefGoogle Scholar
  11. Liang DY, Tentori AM, Dimov IK, Lee LP (2011) Systematic characterization of degas-driven flow for poly (dimethylsiloxane) microfluidic devices. Biomicrofluidics 5:024108CrossRefGoogle Scholar
  12. Lykins J, Li X, Levigne P, Zhou Y, El Bissati K, Clouser F, Wallon M, Morel F, Leahy K, El Mansouri B, Siddiqui M, Leong N, Michalowski M, Irwin E, Goodall P, Ismail M, Christmas M, Adlaoui EB, Rhajaoui M, Barkat A, Cong H, Begeman IJ, Lai BS, Contopoulos- Ioannidis DG, Montoya JG, Maldonado Y, Ramirez R, Press C, Peyron F, McLeod R (2018) Rapid, inexpensive, fingerstick, whole-blood, sensitive, specific, point-of-care test for anti-Toxoplasma antibodies. PLoS Negl Trop Dis 12:e0006536CrossRefGoogle Scholar
  13. Noiphung J, Talalak K, Hongwarittorrn I, Pupinyo N, Thirabowonkitphithan P, Laiwattanapaisal W (2015) A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups. Biosens Bioelectron 67:485–489CrossRefGoogle Scholar
  14. Olanrewaju A, Beaugrand M, Yafia M, Juncker D (2018) Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18:2323–2347CrossRefGoogle Scholar
  15. Peeling R, Mabey D (2010) Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 16:1062–1069CrossRefGoogle Scholar
  16. Safavieh R, Tamayol A, Juncker D (2015) Serpentine and leading-edge capillary pumps for microfluidic capillary systems. Microfluid Nanofluid 18:357–366CrossRefGoogle Scholar
  17. Soleymani J, Perez-Guaita D, Hasanzadeh M, Shadjou M, Jouyban A (2017) Materials and methods of signal enhancement for spectroscopic whole blood analysis: novel research overview. Trend Anal Chem 86:122–142CrossRefGoogle Scholar
  18. Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26:417–426CrossRefGoogle Scholar
  19. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2:131–134CrossRefGoogle Scholar
  20. Wang X, Cheng C, Wang S, Liu S (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–162CrossRefGoogle Scholar
  21. Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U, Heath J (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10:3157–3162CrossRefGoogle Scholar
  22. Wang X, Hagen JA, Papautsky I (2013) Paper pump for passive and programmable transport. Biomicrofluidics 7:014107CrossRefGoogle Scholar
  23. Westman AR, Hugill H (1930) The packing of particles. J Am Ceram Soc 13:767–779CrossRefGoogle Scholar
  24. Xu ZR, Zhong CH, Guan YX, Chen XW, Wang JH, Fang ZL (2008) A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects. Lab Chip 8:1658–1663CrossRefGoogle Scholar
  25. Xu ZR, Yang CG, Liu CH, Zhou Z, Fang J, Wang JH (2010) An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture. Talanta 80:1088–1093CrossRefGoogle Scholar
  26. Yao S, Hertzog DE, Zeng S, Mikkelsen JC Jr, Santiago JG (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interface Sci 268:143–153CrossRefGoogle Scholar
  27. Zimmermann M, Bentley S, Schmid H, Hunziker P, Delamarche E (2005) Continuous flow in open microfluidics using controlled evaporation. Lab Chip 5:1355–1359CrossRefGoogle Scholar
  28. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighUSA
  2. 2.Department of Electrical EngineeringUniversity of MississippiOxfordUSA

Personalised recommendations