Advertisement

Porosity estimation using electric current measurements for paper-based microfluidics

  • Van-Phung Mai
  • Cheng-Hao Ku
  • Ruey-Jen YangEmail author
Research Paper

Abstract

A new method is proposed for estimating the porosity of paper by comparing the electric current passing through a wax-printed channel patterned on the paper surface with that passing through a hollow polydimethylsiloxane (PDMS) channel. To ensure the accuracy of the estimation results, the paper channel is sandwiched between two flat PDMS plates to minimize evaporation losses and replicate the surface properties of the hollow PDMS channel. It is shown that the measured current values in the PDMS and paper channels under driving voltages of 10–50 V are consistent with the results obtained from Poisson–Nernst Planck simulations. Hence, the validity of the experimental model for estimating the paper porosity is confirmed. The porosities of three commercial paper samples are estimated experimentally and compared well with the values determined from the basis weight and thickness data provided by the paper manufacturer. In general, the results confirm that the proposed method provides a low-cost and effective means of evaluating different paper materials for microfluidic paper-based analytical devices (μPADs).

Keywords

Porosity Electrokinetic flow Paper-based microfluidic devices Nernst–Planck equation Boltzmann distribution Electric current 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the Ministry of Science and Technology (MOST) of Taiwan under Project No. 104-2221-E-006-154-MY3 and 107-2221-E-006-127-MY3.

References

  1. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York, pp 137–155Google Scholar
  2. Böhm A, Carstens F, Trieb C, Schabel S, Biesalski M (2014) Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid Nanofluid 16:789–799CrossRefGoogle Scholar
  3. Chang CC, Yeh CP, Yang RJ (2012) Ion concentration polarization near microchannel–nanochannel interfaces: effect of pH value. Electrophoresis 33:758–764CrossRefGoogle Scholar
  4. Choi G, Choi S (2016) Cellular flow in paper-based microfluidics. Sens Actuators B Chem 237:1021–1026CrossRefGoogle Scholar
  5. Cosentino IC, Muccillo ENS, Muccillo R (2003) Development of zirconia-titania porous ceramics for humidity sensors. Sens Actuators B Chem 96:677–683CrossRefGoogle Scholar
  6. Coury L (1999) Conductance measurements. Part 1: Theory. Curr Sep 18:91–96Google Scholar
  7. Freytag I, Roque WL (2013) Influence of granular packing on porosity and tortuosity. Phys Rev E 88:023011CrossRefGoogle Scholar
  8. Harris LA, Yust CS (1976) Transmission electron microscope observations of porosity in coal. Fuel 55:233–236CrossRefGoogle Scholar
  9. Hughes MP, Morgan H, Flynn MF (1999) The dielectrophoretic behavior of submicron latex spheres: influence of surface conductance. J Colloid Interface Sci 220:454–457CrossRefGoogle Scholar
  10. Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505CrossRefGoogle Scholar
  11. Kovacs A, Mescheder U (2012) Transport mechanisms in nanostructured porous silicon layers for sensor and filter applications. Sens Actuators B Chem 175:179–185CrossRefGoogle Scholar
  12. Leung V, Shehata A-AM, Filipe CD, Pelton R (2010) Streaming potential sensing in paper-based microfluidic channels. Colloids Surf Physicochem Eng Asp 364:16–18CrossRefGoogle Scholar
  13. Liang W-H, Chu C-H, Yang R-J (2015) Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents. Talanta 145:6–11CrossRefGoogle Scholar
  14. Löbbus M, Sonnfeld J, van Leeuwen HP, Vogelsberger W, Lyklema J (2000) An improved method for calculating zeta-potentials from measurements of the electrokinetic sonic amplitude. J Colloid Interface Sci 229:174–183CrossRefGoogle Scholar
  15. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRefGoogle Scholar
  16. Matyka M, Khalili A, Koza Z (2008) Tortuosity-porosity relation in porous media flow. Phys Rev E 78:026306CrossRefGoogle Scholar
  17. Nguyen T, Xie Y, de Vreede LJ, van den Berg A, Eijkel JC (2013) Highly enhanced energy conversion from the streaming current by polymer addition. Lab Chip 13:3210–3216CrossRefGoogle Scholar
  18. Nole M, Daigle H, Milliken KL, Prodanović M (2016) A method for estimating microporosity of fine-grained sediments and sedimentary rocks via scanning electron microscope image analysis. Sedimentology 63:1507–1521CrossRefGoogle Scholar
  19. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545CrossRefGoogle Scholar
  20. Park J, Shin JH, Park J-K (2016) Experimental analysis of porosity and permeability in pressed paper. Micromachines 7:48CrossRefGoogle Scholar
  21. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal Chem 28:925–942CrossRefGoogle Scholar
  22. Phan D-T, Shaegh SAM, Yang C, Nguyen N-T (2016) Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization. Sens Actuators B Chem 222:735–740CrossRefGoogle Scholar
  23. Punning A, Johanson U, Aabloo A (2018) Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators. J Appl Phys 123:014502CrossRefGoogle Scholar
  24. Roth J et al (2008) Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24:12603–12611CrossRefGoogle Scholar
  25. Sameenoi Y, Nongkai PN, Nouanthavong S, Henry CS, Nacapricha D (2014) One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 139:6580–6588CrossRefGoogle Scholar
  26. Stana-Kleinschek K, Kreze T, Ribitsch V, Strnad S (2001) Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloids Surf Physicochem Eng Asp 195:275–284CrossRefGoogle Scholar
  27. Tian T, Liu H, Li L, Yu J, Ge S, Song X, Yan M (2017) Paper-based biosensor for noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Sens Actuators B Chem 251:440–445CrossRefGoogle Scholar
  28. Tripp JA, Svec F, Fréchet JMJ, Zeng S, Mikkelsen JC, Santiago JG (2004) High-pressure electroosmotic pumps based on porous polymer monoliths. Sens Actuators B Chem 99:66–73CrossRefGoogle Scholar
  29. Vyhnalkova R, Mansur-Azzam N, Eisenberg A, van de Ven TG (2012) Ten million fold reduction of live bacteria by bactericidal filter paper. Adv Funct Mater 22:4096–4100CrossRefGoogle Scholar
  30. Wang J, Monton MRN, Zhang X, Filipe CD, Pelton R, Brennan JD (2014) Hydrophobic sol–gel channel patterning strategies for paper-based microfluidics. Lab Chip 14:691–695CrossRefGoogle Scholar
  31. Wang H-L, Chu C-H, Tsai S-J, Yang R-J (2016) Aspartate aminotransferase and alanine aminotransferase detection on paper-based analytical devices with inkjet printer-sprayed reagents. Micromachines 7:9CrossRefGoogle Scholar
  32. Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1:3–25CrossRefGoogle Scholar
  33. Yang R-J, Pu H-H, Wang H-L (2015) Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions. Biomicrofluidics 9:014122CrossRefGoogle Scholar
  34. Yang R-J, Tseng C-C, Ju W-J, Fu L-M, Syu M-P (2018a) Integrated microfluidic paper-based system for determination of whole blood albumin. Sens Actuators B Chem 273:1091–1097CrossRefGoogle Scholar
  35. Yang R-J, Tseng C-C, Ju W-J, Wang H-L, Fu L-M (2018b) A rapid paper-based detection system for determination of human serum albumin concentration. Chem Eng J 352:241–246CrossRefGoogle Scholar
  36. Yetisen AK, Akram MS, Lowe CR (2013) based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251CrossRefGoogle Scholar
  37. Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39:1014–1035CrossRefGoogle Scholar
  38. Zhang X, Knackstedt MA (1995) Direct simulation of electrical and hydraulic tortuosity in porous solids. Geophys Res Lett 22:2333–2336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations