Structure of subsonic plane microjets

  • V. M. AniskinEmail author
  • A. A. Maslov
  • K. A. Mukhin
Research Paper


Results of experiments aimed at studying subsonic microjets escaping from a plane nozzle are reported. The Reynolds numbers based on the nozzle height and mean flow velocity at the nozzle exit are varied from 27 to 139, whereas the nozzle size is fixed at 83.3 × 3823 µm. The test gas is air at room temperature. The distributions of velocity and velocity fluctuations along the jet axis and in the lateral and transverse directions are determined. The fact of the laminar–turbulent transition in the jet is detected. The data obtained are compared with theoretical predictions for laminar plane jets. The experimental and theoretical data are found to be in good agreement at the laminar segment of the microjet.

List of symbols


Aspect ratio w/h


Nozzle height


Kinematic impulse


Jet decay rate


Jet spreading rate


Jet Reynolds number


Velocity in the x direction


Mean velocity at the nozzle exit


Centerline velocity in the x direction


The maximum jet velocity at the nozzle exit


Fluctuating velocity component in the x direction


Nozzle width


Distance between the virtual source of the theoretical jet and the nozzle exit of the real jet

x, y, z

Streamwise (x), lateral (y) and transverse (z) coordinates

y0.5, z0.5

Jet half-width, i.e., the distance at which the velocity value equal to one-half of the maximum value


Kinematic viscosity



The work was supported by the Russian Science Foundation (Grant no. 17-19-01157, methodical part of this work) and RFBR (Project no. 18-31-00272).


  1. Andrade EN, Da C (1939) The velocity distribution in a liquid-into-liquid jet. Part 2: the plane jet. Proc Phys Sос 5(1):784–793CrossRefGoogle Scholar
  2. Aniskin VM, Bountin DA, Maslov AA, Mironov SG, Tsyryulnikov IS (2012) Investigation of stability of a subsonic gas microjet,Zh. Tekh Fiz 82(2):17–23Google Scholar
  3. Aniskin VM, Mironov SG, Maslov AA (2013) Investigation of the structure of supersonic nitrogen microjets. Microfluid Nanofluid 14(3):605–661CrossRefGoogle Scholar
  4. Aniskin VM, Lemanov VV, Maslov NA, Mukhin KA, Terekhov VI, Sharov KA (2015) Experimental study of subsonic flow plane mini- and microjets of air. Tech Phys Lett 41:26–31Google Scholar
  5. Bashir J, Uberoi MS (1975) Experiments on turbulent structure and heat transfer in a two dimensional jet. Phys Fluids 18(4):405–410CrossRefGoogle Scholar
  6. Bickley WG (1937) LXXIII. The plane jet. Lond Edinb Dublin Philos Mag J Sci 23(156):727–773CrossRefGoogle Scholar
  7. Chanaud RC, Powell A (1962) Experiments concerning the sound-sensitive jet. J Acoust Soc Am 34(7):907–915CrossRefGoogle Scholar
  8. Deo RC (2013) The role of nozzle-exit conditions on the flow field of a plane jet. Int J Mech Aerosp Ind Mechatron Eng 7(12):1454–1463Google Scholar
  9. Deo RC, Mi J, Nathan GJ (2007a) The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Exp Thermal Fluid Sci 32:545–559CrossRefGoogle Scholar
  10. Deo RC, Mi J, Nathan GJ (2007b) The influence of nozzle aspect ratio on plane jets. Exp Thermal Fluid Sci 31:825–838CrossRefGoogle Scholar
  11. Deo RC, Nathan GJ, Mi J (2007c) Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls. Exp Thermal Fluid Sci 32:596–606CrossRefGoogle Scholar
  12. Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids 21:092001CrossRefGoogle Scholar
  13. Gau C, Shen CH, Chang CJ (2013) Flow and heat transfer of a micro jet impinging on a heated chip: part I—micro free and impinging jet flow. Nanoscale Microscale Thermophys Eng 17:50–68CrossRefGoogle Scholar
  14. Gutmark E, Wygnanski I (1976) The planar turbulent jet. J Fluid Mech 73(3):465–495CrossRefGoogle Scholar
  15. Hadrys D, Piwnikb J (2014) Welding with microjet cooling as a method of improving, the plastic properties of welds. J Eng Phys Thermophys 87(5):1170–1176CrossRefGoogle Scholar
  16. Hill WG, Jenkins RC, Gilbert BL (1976) Effects of the initial boundary layer state on turbulent jet mixing. AIAA J 14:1513–1514CrossRefGoogle Scholar
  17. Hitchman GJ, Strong AB, Slawson PR, Ray G (1990) Turbulent planar jet with and without confining walls. AIAA J 28(10):1699–1700CrossRefGoogle Scholar
  18. Hussain AKMF, Clark AR (1977) Upstream influence on the near field of a planar turbulent jet. Phys Fluids 20(9):1416–1426CrossRefGoogle Scholar
  19. Kozlov VV, Grek GR, Litvinenko YuA (2016) Visualization of conventional and combusting subsonic jet instabilities. Springer International Publishing, Dordrecht, p 126CrossRefGoogle Scholar
  20. Krivokorytov MS, Golub VV, Moralev IA (2013) Development of instability in gas microjets under an acoustic action. Pisma Zh Tekh Fiz 39(18):38–44Google Scholar
  21. Krothapalli A, Baganoff D, Karamcheti K (1981) On the mixing of rectangular jet. J Fluid Mech 107:201–220CrossRefGoogle Scholar
  22. Lemanov VV, Terekhov VI, Sharov KA, Shumeiko AA (2013) Experimental study of submerged jets at low Reynolds numbers. Pisma Zh Tekh Fiz 39(9):34–40Google Scholar
  23. Mi J, Deo RC, Nathan GJ (2005) Characterization of turbulent jets from high-aspect-ratio rectangular nozzles. Phys Fluids 17:068102CrossRefGoogle Scholar
  24. Miller DR, Comings EW (1957) Static pressure distribution in a free turbulent jet. J Fluid Mech 3:1–16CrossRefGoogle Scholar
  25. Namer I, Ötügen MV (1988) Velocity measurements in a planar turbulent air jet at moderate Reynolds numbers. Exp Fluids 6:387–399CrossRefGoogle Scholar
  26. Peacock T, Bradley E, Hertzberg J, Lee YC (2004) Forcing a planar jet flow using MEMS. Exp Fluids 37:22–28CrossRefGoogle Scholar
  27. Quinn WR, Pollard A (1985) Mean velocity and static pressure distributions in a three-dimensional turbulent free jet. AIAA J 23(6):971–973CrossRefGoogle Scholar
  28. Rusowicza A, Leszczynski MJ, Grzebieleca A, Laskowski R (2015) Experimental investigation of single-phase microjet cooling of microelectronics. Arch Thermodyn 36(3):139–147CrossRefGoogle Scholar
  29. Sato H (1960) The stability and transition of a two-dimensional jet. J Fluid Mech 7:53–80MathSciNetCrossRefGoogle Scholar
  30. Satо H, Sakao F (1964) An experimental investigation of the instability of a two-dimensional jet at low Reynolds numbers. J Fluid Mech 20(2):337–352CrossRefGoogle Scholar
  31. Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill, Inc., New York, p 419Google Scholar
  32. Sforza PM, Stasi W (1979) Heated three-dimensional turbulent jets. J Heat Transf 10(1):353–358CrossRefGoogle Scholar
  33. Sforza PM, Steiger MH, Trentacoste N (1966) Studies on three-dimensional viscous jet. AIAA J 4(5):800–806CrossRefGoogle Scholar
  34. Tabeling P (2005) Introduction to microfluids. Oxford University Press, OxfordGoogle Scholar
  35. Xiaobing L, Wei C, Renxia S, Sheng L (2008) Experimental and numerical investigation of a microjet-based cooling system for high power LEDs. Heat Transf Eng 29(9):774–781CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied MechanicsSiberian Branch, Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations