A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis

  • Yi-Ying Wang
  • Ho-Wen Cheng
  • Kai-Wei Chang
  • Jessie Shiue
  • Juen-Kai Wang
  • Yuh-Lin Wang
  • Nien-Tsu HuangEmail author
Research Paper


Based on its highly specific and non-invasive features, surface-enhanced Raman scattering (SERS) has been applied for analytical chemistry or biological applications, such as identification of chemical compositions, cells or bacteria. However, if the targeted sample consists of multiple compounds, the corresponded SERS spectra would be quite difficult to analyze. To address above problems, we developed a particle-based microfluidic molecular separation (PMMS) integrating SERS substrate to separate complicate molecule mixture followed by in situ SERS detection. The platform consists of an automatic microfluidic control system to precisely control the sample and reagent flow in the PMMS–SERS device, composed of a 5-µm particle-packed separation column followed by a two-dimensional Ag nanostructural substrate. To proof-of-concept, we first tested the molecule separation functionality using the mixture of fluorescent FITC and R6G dyes. Later, we introduced the hypoxanthine and adenine mixture—main purine metabolites of E. coli—into the system for on-chip separation, identification, and quantification based on acquired SERS signatures. Overall, the miniaturized PMMS–SERS system enables an easy-to-use and sensitive analyte detection, which could be beneficial in applications requiring bacteria identification and quantification, such as environmental monitoring, AST, and drug development.


Microfluidics Molecular separation Surface-enhanced Raman scattering (SERS) Molecule analysis 



This work was supported by the Ministry of Science and Technology under Grants “MOST 106-2221-E-002-058-MY3” and “MOST 106-2745-M-001-004-ASP”.

Supplementary material

10404_2019_2216_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1950 KB)


  1. Boardman AK et al (2016) Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal Chem 88:8026–8035. CrossRefGoogle Scholar
  2. Carrillo-Carrión C, Armenta S, Simonet BM, Valcárcel M, Lendl B (2011) Determination of pyrimidine and purine bases by reversed-phase capillary liquid chromatography with at-line surface-enhanced Raman spectroscopic detection employing a novel SERS substrate based on ZnS/CdSe silver–quantum dots. Anal Chem 83:9391–9398. CrossRefGoogle Scholar
  3. Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828 CrossRefGoogle Scholar
  4. Chen J, Abell J, Huang Y-W, Zhao Y (2012) On-chip ultra-thin layer chromatography and surface enhanced raman spectroscopy. Lab Chip 12:3096–3102. CrossRefGoogle Scholar
  5. Cowcher DP, Jarvis R, Goodacre R (2014) Quantitative online liquid chromatography-surface-enhanced Raman scattering of purine bases. Anal Chem 86:9977–9984. CrossRefGoogle Scholar
  6. Fang Y, Seong N-H, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321:388–392. CrossRefGoogle Scholar
  7. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. CrossRefGoogle Scholar
  8. Geissler D, Heiland JJ, Lotter C, Belder D (2017) Microchip HPLC separations monitored simultaneously by coherent anti-Stokes Raman scattering and fluorescence detection. Microchim Acta 184:315–321. CrossRefGoogle Scholar
  9. Grinias JP, Kennedy RT (2016) Advances in and prospects of microchip liquid chromatography. TrAC Trends Anal Chem 81:110–117. CrossRefGoogle Scholar
  10. Huang J-A, Zhang Y-L, Ding H, Sun H-B (2015) SERS-enabled lab-on-a-chip systems. Adv Opt Mater 3:618–633. CrossRefGoogle Scholar
  11. Huft J, Haynes CA, Hansen CL (2013) Fabrication of high-quality microfluidic solid-phase chromatography columns. Anal Chem 85:1797–1802. CrossRefGoogle Scholar
  12. Kabiri S, Kurkuri MD, Kumeria T, Losic D (2014) Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection. RSC Ad 4:15276–15280. CrossRefGoogle Scholar
  13. Kecskemeti A, Gaspar A (2018) Particle-based liquid chromatographic separations in microfluidic devices—a review. Anal Chim Acta 1021:1–19. CrossRefGoogle Scholar
  14. Kim D et al (2014) Microfluidic-SERS devices for one shot limit-of-detection. Analyst 139:3227–3234. CrossRefGoogle Scholar
  15. Li JF et al (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395. CrossRefGoogle Scholar
  16. Lim C, Hong J, Chung BG, deMello AJ, Choo J (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135:837–844. CrossRefGoogle Scholar
  17. Liu T-Y et al (2011) Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat Commun 2:538. CrossRefGoogle Scholar
  18. Liu C-Y et al (2016) Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep 6:23375. CrossRefGoogle Scholar
  19. Manimaran M, Jana NR (2007) Detection of protein molecules by surface-enhanced Raman spectroscopy-based immunoassay using 2–5 nm gold nanoparticle lables. J Raman Spectrosc 38:1326–1331. CrossRefGoogle Scholar
  20. Nagy A, Gaspar A (2013) Packed multi-channels for parallel chromatographic separations in microchips. J Chromatogr A 1304:251–256. CrossRefGoogle Scholar
  21. Nagy A, Baranyai E, Gaspar A (2014) Interfacing microfluidic chip-based chromatography with flame atomic absorption spectrometry for the determination of chromium(VI). Microchem J 114:216–222. CrossRefGoogle Scholar
  22. Nguyen A, Schultz ZD (2016) Quantitative online sheath-flow surface enhanced Raman spectroscopy detection for liquid chromatography. Analyst 141:3630–3635. CrossRefGoogle Scholar
  23. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106. CrossRefGoogle Scholar
  24. Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD (2016) The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem 408:4631–4647. CrossRefGoogle Scholar
  25. Rogers BJ, Birdsall RE, Wu Z, Wirth MJ (2013) RPLC of intact proteins using sub-0.5 µm particles and commercial instrumentation. Anal Chem 85:6820–6825 CrossRefGoogle Scholar
  26. Sheng R, Ni F, Cotton MT (1991) Determination of purine bases by reversed-phase high-performance liquid chromatography using real-time surface-enhanced Raman spectroscopy. Anal Chem 63:437–442. CrossRefGoogle Scholar
  27. Subaihi A et al (2017) Quantitative online liquid chromatography–surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites. Anal Chem 89:6702–6709. CrossRefGoogle Scholar
  28. Taylor LC, Kirchner TB, Lavrik NV, Sepaniak MJ (2012) Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips. Analyst 137:1005–1012. CrossRefGoogle Scholar
  29. Tung Y-C et al (2012) Optofluidic detection for cellular phenotyping. Lab Chip 12:3552–3565. CrossRefGoogle Scholar
  30. Tycova A, Prikryl J, Foret F (2017) Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy. Electrophoresis 38:1977–1987. CrossRefGoogle Scholar
  31. Vlasko-Vlasov V, Joshi-Imre A, Bahns JT, Chen L, Ocola L, Welp U (2010) Liquid cell with plasmon lenses for surface enhanced Raman spectroscopy. Appl Phys Lett 96:203103. CrossRefGoogle Scholar
  32. Wallace RA, Lavrik NV, Sepaniak MJ (2017) Ultra-thin layer chromatography with integrated silver colloid-based SERS detection. Electrophoresis 38:361–367. CrossRefGoogle Scholar
  33. Xu B-B et al (2011) A SERS-active microfluidic device with tunable surface plasmon resonances. Electrophoresis 32:3378–3384. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Institute of Atomic and Molecular SciencesAcademia SinicaTaipeiTaiwan
  3. 3.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  4. 4.Center for Condensed Matter SciencesNational Taiwan UniversityTaipeiTaiwan
  5. 5.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations