Advertisement

Temperature gap drives directed diffusion in microfluidic chip system

  • Xiao Zhi
  • Liang Chen
  • Shan Gao
  • Shujing Lin
  • Di Chen
  • Jiaqi Niu
  • Zhiying Jin
  • Bin Ji
  • Lin Kang
  • Xianting Ding
  • Wenwen Xin
  • Jinglin WangEmail author
  • Daxiang CuiEmail author
  • Hao YangEmail author
Short Communication
  • 107 Downloads

Abstract

Diffusion plays a critical role in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. An understanding of micro-diffusion near the interface is significant for developing high-performance bioassays, biosensors, and biofuel cells. Herein, we explored micro-diffusion behavior at different temperature gaps in microfluidic chip and enzyme-linked immunosorbent assay (ELISA) microplates. It exhibited that temperature gap could distinctly promote directional diffusion of molecules in microfluidic chip from high concentration zone to low concentration zone. In addition, experimental results of specially designed ELISA also partly confirmed that the temperature gap could effectively improve the performance of ELISA by 54.5%. In compared with conventional ELISA, the as-prepared temperature-gap functional module in microfluidic chip has obvious advantages of miniaturization, integration, customization, and low cost. All in all, the current work indicates that temperature-gap function has great potential in biomedical detection, food safety, and so on. It can be utilized to develop novel biological detection approaches and related instruments or microfluidic chips.

Keywords

Temperature gap Microfluidics Biological detection Microzone diffusion 

Notes

Acknowledgements

This work was supported by Experimental Technology Special Fund of Shanghai Jiao Tong University (no. JCZXSJB2018-003), the National Key Scientific Research Project of China (nos. AWS15J006, SKLPBS1827 and 2017YFC1200900), Science and Technology Commission of Shanghai Municipality (no. 15441904800) and National Key Basic Research Program of China (973 Project) (no. 2017YFA0205300). It was carried out in Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Al-Faqheri W, Thio THG, Qasaimeh MA, Dietzel A, Madou M, Al-Halhouli A (2017) Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid Nanofluidics.  https://doi.org/10.1007/s10404-017-1933-4 CrossRefGoogle Scholar
  2. Aslan K (2010) Rapid whole blood bioassays using microwave-accelerated metal-enhanced fluorescence. Nano Biomed Eng 2:1–9CrossRefGoogle Scholar
  3. Aslan K (2011) Rapid and sensitive detection of troponin I–T–C complex from human serum using microwave-accelerated metal-enhanced fluorescence. Nano Biomed Eng 3:179–183.  https://doi.org/10.5101/nbe.v3i3.p179-183 CrossRefGoogle Scholar
  4. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77:8057–8067.  https://doi.org/10.1021/ac0516077 CrossRefGoogle Scholar
  5. Aslan K, Grell TAJ (2011) Rapid and sensitive detection of troponin I in human whole blood samples by using silver nanoparticle films and microwave heating. Clin Chem 57:746–752.  https://doi.org/10.1373/clinchem.2010.159889 CrossRefGoogle Scholar
  6. Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK (2017) DNA extraction on bio-chip: history and preeminence over conventional and solid-phase extraction methods. Appl Microbiol Biotechnol 101:8077–8088.  https://doi.org/10.1007/s00253-017-8493-0 CrossRefGoogle Scholar
  7. Burinaru TA et al (2018) Detection of circulating tumor cells using microfluidics. ACS Comb Sci 20:107–126.  https://doi.org/10.1021/acscombsci.7b00146 CrossRefGoogle Scholar
  8. Butler JE (2004) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods Mol Med 94:333–372Google Scholar
  9. Caglayan H, Cakmakyapan S, Addae SA, Pinard MA, Caliskan D, Aslan K, Ozbay E (2010) Ultrafast and sensitive bioassay using split ring resonator structures and microwave heating. Appl Phys Lett 97:093701.  https://doi.org/10.1063/1.3484958 CrossRefGoogle Scholar
  10. Cui X et al (2018) A fluorescent microbead-based microfluidic immunoassay chip for immune cell cytokine secretion quantification. Lab Chip 18:522–531.  https://doi.org/10.1039/c7lc01183k CrossRefGoogle Scholar
  11. Kaminski TS, Garstecki P (2017) Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 46:6210–6226.  https://doi.org/10.1039/c5cs00717h CrossRefGoogle Scholar
  12. Kara V, Duan C, Gupta K, Kurosawa S, Stearns-Kurosawa DJ, Ekinci KL (2018) Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab Chip 18:743–753.  https://doi.org/10.1039/C7LC01019B CrossRefGoogle Scholar
  13. Khan SM, Gumus A, Nassar JM, Hussain MM (2018) CMOS enabled microfluidic systems for healthcare based applications. Adv Mater.  https://doi.org/10.1002/adma.201705759 CrossRefGoogle Scholar
  14. Mauk MG, Song J, Liu C, Bau HH (2018) Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests. Biosensors.  https://doi.org/10.3390/bios8010017 CrossRefGoogle Scholar
  15. Mohamadi RM et al (2015) Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. Angew Chem Int Ed 54:139–143 doi.  https://doi.org/10.1002/anie.201409376 CrossRefGoogle Scholar
  16. Mohammed M, Aslan K (2013) Design and proof-of-concept use of a circular PMMA platform with 16-well sample capacity for microwave-accelerated bioassays. Nano Biomed Eng 5:10–19CrossRefGoogle Scholar
  17. Mohammed M, Aslan K (2014) Rapid and sensitive detection of p53 based on DNA-protein binding interactions using silver nanoparticle films and microwave heating. Nano Biomed Eng 6:76–84.  https://doi.org/10.5101/nbe.v6i3.p76-84 CrossRefGoogle Scholar
  18. Mohammed M, Clement TC, Aslan K (2014) Circular bioassay platforms for applications in microwave-accelerated techniques. Nano Biomed Eng 6:85–93Google Scholar
  19. Mohammed M, Syed MF, Aslan K (2016) Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples. Biosens Bioelectron 75:420–426.  https://doi.org/10.1016/j.bios.2015.08.061 CrossRefGoogle Scholar
  20. Ng AHC et al (2018) A digital microfluidic system for serological immunoassays in remote settings. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aar6076 CrossRefGoogle Scholar
  21. Pandey CM, Augustine S, Kumar S, Kumar S, Nara S, Srivastava S, Malhotra BD (2018) Microfluidics based point-of-care diagnostics. Biotechnol J 13:1700047.  https://doi.org/10.1002/biot.201700047 CrossRefGoogle Scholar
  22. Rodriguez-Ruiz I, Babenko V, Martinez-Rodriguez S, Gavira JA (2018) Protein separation under a microfluidic regime. Analyst 143:606–619.  https://doi.org/10.1039/c7an01568b CrossRefGoogle Scholar
  23. Sanghavi BJ, Moore JA, Chávez JL, Hagen JA, Kelley-Loughnane N, Chou C-F, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252.  https://doi.org/10.1016/j.bios.2015.11.044 CrossRefGoogle Scholar
  24. Sonato A et al (2016) A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. Lab Chip 16:1224–1233.  https://doi.org/10.1039/c6lc00057f CrossRefGoogle Scholar
  25. Tan X, Khaing Oo MK, Gong Y, Li Y, Zhu H, Fan X (2017) Glass capillary based microfluidic ELISA for rapid diagnostics. Analyst 142:2378–2385.  https://doi.org/10.1039/c7an00523g CrossRefGoogle Scholar
  26. Usuba R et al (2016) Photonic lab-on-a-chip for rapid cytokine detection. ACS Sens 1:979–986.  https://doi.org/10.1021/acssensors.6b00193 CrossRefGoogle Scholar
  27. Yang H, Gijs MAM (2018) Micro-optics for microfluidic analytical applications. Chem Soc Rev 47:1391–1458.  https://doi.org/10.1039/c5cs00649j CrossRefGoogle Scholar
  28. Zhang Y, Nguyen NT (2017) Magnetic digital microfluidics—a review. Lab Chip 17:994–1008.  https://doi.org/10.1039/c7lc00025a CrossRefGoogle Scholar
  29. Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X (2015) Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew Chem Int Ed 54:3952–3956.  https://doi.org/10.1002/anie.201500096 CrossRefGoogle Scholar
  30. Zhang W, He Z, Yi L, Mao S, Li H, Lin J-M (2018) A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens Bioelectron 102:652–660.  https://doi.org/10.1016/j.bios.2017.12.017 CrossRefGoogle Scholar
  31. Zhi X, Liu Q, Zhang X, Zhang Y, Feng J, Cui D (2012) Quick genotyping detection of HBV by giant magnetoresistive biochip combined with PCR and line probe assay. Lab Chip 12:741–745.  https://doi.org/10.1039/c2lc20949g CrossRefGoogle Scholar
  32. Zhi X et al (2014) A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens Bioelectron 54:372–377.  https://doi.org/10.1016/j.bios.2013.11.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao Zhi
    • 1
  • Liang Chen
    • 2
  • Shan Gao
    • 2
  • Shujing Lin
    • 3
  • Di Chen
    • 3
  • Jiaqi Niu
    • 3
  • Zhiying Jin
    • 2
  • Bin Ji
    • 2
  • Lin Kang
    • 2
  • Xianting Ding
    • 1
  • Wenwen Xin
    • 2
  • Jinglin Wang
    • 2
    Email author
  • Daxiang Cui
    • 3
    • 4
    Email author
  • Hao Yang
    • 2
    Email author
  1. 1.School of Biomedical Engineering, Institute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingPeople’s Republic of China
  3. 3.Department of Instrument Science and Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  4. 4.Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Institute of Nano Biomedicine and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations