# Molecular diffusion replaces capillary pumping in phase-change-driven nanopumps

- 39 Downloads

## Abstract

Inspired by the capillary-driven heat transfer devices, we present a phase-change-driven nanopump operating almost isothermally. Computational experiments on different-sized nanopumps revealed efficient operation of the pump despite the reduction in system size that extinguishes capillary pumping by annihilating the liquid meniscus structures. Measuring the density distribution of liquid near evaporating and condensing liquid/vapor interfaces, we discovered that phase-change-induced molecular-scale mass diffusion mechanism replaces the capillary pumping in the absence of meniscus structures as long as the liquid wets the walls of the capillary conduit. Therefore, proposed pumps can serve as a part of both nanoelectromechanical and microelectromechanical systems with similar working efficiencies.

## Keywords

Nanopump Phase change Molecular dynamics Nanoscale fluid transport Evaporating meniscus Capillary pumping## Notes

### Acknowledgements

Authors thank Prof. BoHung Kim of University of Ulsan for the helpful discussions. Y.A. acknowledges the financial support of ASELSAN Inc. under scholarship program for postgraduate studies. Computations were carried out using high-performance computing facilities of Center for Scientific Computation at Southern Methodist University.

## Supplementary material

Supplementary material 1 (MP4 28,490 kb)

Supplementary material 2 (MP4 26,570 kb)

## References

- Akkuş Y, Dursunkaya Z (2016) A new approach to thin film evaporation modeling. Int J Heat Mass Transf 101:742–748CrossRefGoogle Scholar
- Akkuş Y, Tarman H, Çetin B, Dursunkaya Z (2017) Two-dimensional computational modeling of thin film evaporation. Int J Therm Sci 121:237–248CrossRefGoogle Scholar
- Barisik M, Beskok A (2012) Boundary treatment effects on molecular dynamics simulations of interface thermal resistance. J Comput Phys 231(23):7881–7892CrossRefGoogle Scholar
- Barisik M, Beskok A (2013) Wetting characterisation of silicon (1, 0, 0) surface. Mol Simulat 39(9):700–709CrossRefGoogle Scholar
- Cheng L, Fenter P, Nagy K, Schlegel M, Sturchio N (2001) Molecular-scale density oscillations in water adjacent to a mica surface. Phys Rev Lett 87(15):156,103CrossRefGoogle Scholar
- De Luca S, Todd B, Hansen J, Daivis P (2013) Electropumping of water with rotating electric fields. J Chem Phys 138(15):154,712CrossRefGoogle Scholar
- Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983CrossRefGoogle Scholar
- Freund J (2005) The atomic detail of an evaporating meniscus. Phys Fluids 17(2):022,104CrossRefGoogle Scholar
- Ghorbanian J, Celebi A, Beskok A (2016) A phenomenological continuum model for force-driven nano-channel liquid flows. J Chem Phys 145(18):184,109CrossRefGoogle Scholar
- Heslot F, Fraysse N, Cazabat A (1989) Molecular layering in the spreading of wetting liquid drops. Nature 338(6217):640CrossRefGoogle Scholar
- Huang D, Cottin-Bizonne C, Ybert C, Bocquet L (2007) Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels. Phys Rev Lett 98(17):177,801CrossRefGoogle Scholar
- Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56CrossRefGoogle Scholar
- Karniadakis G, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, BerlinzbMATHGoogle Scholar
- Koplik J, Banavar J, Willemsen J (1988) Molecular dynamics of Poiseuille flow and moving contact lines. Phy Rev Lett 60(13):1282CrossRefGoogle Scholar
- Li X, Kong G, Zhang X, He G (2013) Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field. Appl Phys Lett 103(14):143,117CrossRefGoogle Scholar
- Li Y, Xu J, Li D (2010) Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid 9(6):1011–1031CrossRefGoogle Scholar
- Liu C, Li Z (2009) Flow regimes and parameter dependence in nanochannel flows. Phys Rev E 80(3):036,302CrossRefGoogle Scholar
- Liu C, Li Z (2010) Molecular dynamics simulation of composite nanochannels as nanopumps driven by symmetric temperature gradients. Phys Rev Lett 105(17):174,501CrossRefGoogle Scholar
- Liu C, Lv Y, Li Z (2012) Fluid transport in nanochannels induced by temperature gradients. J Chem Phys 136(11):114,506CrossRefGoogle Scholar
- Longhurst M, Quirke N (2007) Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett 7(11):3324–3328CrossRefGoogle Scholar
- Maroo S, Chung J (2008) Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics. J Colloid Interf Sci 328(1):134–146CrossRefGoogle Scholar
- Maroo S, Chung J (2010) Heat transfer characteristics and pressure variation in a nanoscale evaporating meniscus. Int J Heat Mass Transf 53(15–16):3335–3345CrossRefGoogle Scholar
- Maruyama S, Kimura T (1999) A study on thermal resistance over a solid–liquid interface by the molecular dynamics method. Therm Sci Eng 7(1):63–68Google Scholar
- Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
- Prakash S, Zambrano HA, Fuest M, Boone C, Rosenthal-Kim E, Vasquez N, Conlisk A (2015) Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluid 19(6):1455–1464CrossRefGoogle Scholar
- Qiao R, Aluru N (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys 118(10):4692–4701CrossRefGoogle Scholar
- Qin L, Zhao X, Hirahara K, Miyamoto Y, Ando Y, Iijima S (2000) Materials science: the smallest carbon nanotube. Nature 408(6808):50CrossRefGoogle Scholar
- Rinne K, Gekle S, Bonthuis D, Netz R (2012) Nanoscale pumping of water by AC electric fields. Nano Lett 12(4):1780–1783CrossRefGoogle Scholar
- Shannon M, Bohn P, Elimelech M, Georgiadis J, Marinas B, Mayes A (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301CrossRefGoogle Scholar
- Shiomi J, Maruyama S (2009) Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20(5):055,708CrossRefGoogle Scholar
- Sumith Y, Maroo S (2016) Origin of surface-driven passive liquid flows. Langmuir 32(34):8593–8597CrossRefGoogle Scholar
- Thekkethala J, Sathian S (2013) Thermal transpiration through single walled carbon nanotubes and graphene channels. J Chem Phys 139(17):174,712CrossRefGoogle Scholar
- Travis K, Todd B, Evans D (1997) Departure from Navier–Stokes hydrodynamics in confined liquids. Phys Rev E 55(4):4288CrossRefGoogle Scholar
- Vo T, Barisik M, Kim B (2015) Near-surface viscosity effects on capillary rise of water in nanotubes. Phys Rev E 92(5):053,009MathSciNetCrossRefGoogle Scholar
- Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2(2):87CrossRefGoogle Scholar
- Yi P, Poulikakos D, Walther J, Yadigaroglu G (2002) Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transf 45(10):2087–2100CrossRefGoogle Scholar
- Yu J, Wang H (2012) A molecular dynamics investigation on evaporation of thin liquid films. Int J Heat Mass Transf 55(4):1218–1225CrossRefGoogle Scholar
- Zambrano H, Walther J, Koumoutsakos P, Sbalzarini I (2009) Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett 9(1):66–71CrossRefGoogle Scholar
- Zhang Q, Yang R, Jiang W, Huang Z (2016) Fast water channeling across carbon nanotubes in far infrared terahertz electric fields. Nanoscale 8(4):1886–1891CrossRefGoogle Scholar
- Zhao K, Wu H (2015) Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett 15(6):3664–3668CrossRefGoogle Scholar