Advertisement

Isolation of single motile cells using a high-speed picoliter pipette

  • Yusuke Kasai
  • Shinya SakumaEmail author
  • Fumihito Arai
Research Paper
  • 154 Downloads

Abstract

Isolation of single cells is a fundamental technique for single-cell analyses. High resolution of controlled volume is required to isolate the target cell from a cell group with tiny medium of single-cell level. Furthermore, the speed of isolation is also an important requirement to capture a motile cell. To achieve cell isolation with high resolution at high speed, we present a high-speed picoliter pipette as an isolation device, which is driven by a piezoelectric actuator. We evaluated performances of the developed picoliter pipette. The results showed a high-resolution and high-speed response of 0.42 pL and 3.9 ms, respectively. In addition, we applied the picoliter pipette to isolate the Euglena gracilis (E. gracilis) cell which was a motile cell. Utilizing the fast response of developed picoliter pipette, we succeeded in picking up a swimming single E. gracilis cell. After the picking up, we isolated the picked cells into other culture dish individually. We evaluated viability of the isolated E. gracilis cells, and 99.1 % (total: 110 cells) of the cells showed motility and division ability. From these results, we achieved the high-speed picoliter pipetting for single-cell isolation.

Keywords

Micropipette High-speed Picoliter Cell isolation Motile cell Euglena 

Notes

Acknowledgements

This study was supported by a Grant-in-Aid from the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT).

Supplementary material

Supplementary material 1 (mp4 644 KB)

10404_2018_2183_MOESM2_ESM.mp4 (441 kb)
Supplementary material 2 (mp4 440 KB)
10404_2018_2183_MOESM3_ESM.mp4 (1007 kb)
Supplementary material 3 (mp4 1006 KB)
10404_2018_2183_MOESM4_ESM.mp4 (1.4 mb)
Supplementary material 4 (mp4 1440 KB)

References

  1. Actis P, Maalouf MM, Kim HJ, Lohith A, Vilozny B, Seger RA, Pourmand N (2014) Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8(1):546553Google Scholar
  2. Anis Y, Houkal J, Holl M, Johnson R, Meldrum D (2011) Diaphragm pico-liter pump for single-cell manipulation. Biomed Microdevices 13(4):651–659CrossRefGoogle Scholar
  3. Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Peer D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696CrossRefGoogle Scholar
  4. Chen Y, Li P, Huang P-H, Xie Y, Mai JD, Wang L, Nguyen N-T, Huang TJ (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645CrossRefGoogle Scholar
  5. Chen A, Lynch KB, Ren J, Jia Z, Yang Y, Lu JJ, Liu S (2017) Tunable electroosmosis-based femto-liter pipette: a promising tool toward living-cell surgery. Anal Chem 89(20):10806–10812CrossRefGoogle Scholar
  6. Gentil OG, Potthoff E, Ossola D, Drig P, Zambelli T, Vorholt JA (2013) Force-controlled fluidic injection into single cell nuclei. Small 9(13):1904–1907CrossRefGoogle Scholar
  7. Graf T, Stadtfeld M (2008) Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3(5):480483CrossRefGoogle Scholar
  8. Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P (2015) Technologies for single-cell isolation. Int J Mol Sci 16(8):16897–16919CrossRefGoogle Scholar
  9. Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6(2):146155CrossRefGoogle Scholar
  10. Lam AT, Samuel-Gama KG, Griffin J, Loeun M, Gerber LC, Hossain Z, Cira NJ (2017) Device and programming abstractions for spatiotemporal control of active micro-particle swarms. Lab chip 17(8):1442–1451CrossRefGoogle Scholar
  11. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY, Yaswen P, Goga A, Werb Z (2015) Single-cell analysis reveals a stem-cell analysis reveals stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135CrossRefGoogle Scholar
  12. Long Z, Nugent E, Javer A, Cicuta P, Sclavi B, Lagomarsinodef MC, Dorfman KD (2013) Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 13(5):947–954CrossRefGoogle Scholar
  13. Marasso SL, Puliafito A, Mombello D, Benetto S, Primo L, Bussolino F, Pirri CF, Cocuzza M (2017) Optimized design and fabrication of a microfluidic platform to study single cells and multicellular aggregates in 3D. Microfluid Nanofluidics 21(2):29CrossRefGoogle Scholar
  14. Masuda T, Song W, Nakanishi H, Lei W, Noor AM, Arai F (2017) Rare cell isolation and recovery on openchannel microfluidic chip. PLoS One 12(4):e0174937CrossRefGoogle Scholar
  15. Moffitt JR, Lee JB, Cluzel P (2012) The single-cell chemostat: an agarose-based, microfluidic device for highthroughput, single-cell studies of bacteria and bacterial communities. Lab Chip 12(8):1487–1494CrossRefGoogle Scholar
  16. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, Derisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441(7095):840846CrossRefGoogle Scholar
  17. Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, Iino T, Arai F, Endo T, Fujiwaki Y, Fukuzawa H, Hase M, Hayakawa T, Hiramatsu K, Hoshino Y, Inaba M, Ito T, Karakawa H, Kasai Y, Koizumi K, Lee S, Lei C, Li M, Maeno T, Matsusaka S, Murakami D, Nakagawa A, Oguchi Y, Oikawa M, Ota T, Shiba K, Shintaku H, Shirasaki Y, Suga K, Suzuki Y, Suzuki N, Tanaka Y, Tezuka H, Toyokawa C, Yalikun Y, Yamada M, Yamagishi M, Yamano T, Yasumoto A, Yatomi Y, Yazawa M, Di Carlo D, Hosokawa Y, Uemura S, Ozeki Y, Goda K (2018) Intelligent image-activated cell sorting. Cell 175(1):266–276CrossRefGoogle Scholar
  18. Sakuma S, Kasai Y, Arai F (2017) On-chip cell sorting by high-speed local-flow control using dual membrane pumps”. Lab Chip 17(16):2760–2767CrossRefGoogle Scholar
  19. Sakuma S, Kuroda K, Arai F, Taniguchi T, Ohtani T, Sakata Y, Kaneko M (2014) High resolution cell positioning based on a flow reduction mechanism for enhancing deformability mapping. Micromachines 5(4):1188–1201CrossRefGoogle Scholar
  20. Stallwitz E, Hader DP (1994) Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis. Eur J Protistol 30(1):18–24CrossRefGoogle Scholar
  21. Thompson AM, Paguirigan AL, Kreutz JE, Radichb JP, Chiu DT (2014) Microfluidics for single-cell genetic analysis. Lab Chip 14(17):3135–3142CrossRefGoogle Scholar
  22. Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB, Bertozzi CR, Mathies RA (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci 105(51):20173–20178CrossRefGoogle Scholar
  23. Urbanits S, Griesmacher A, Hopfinger G, Stockhammer G, Karimi A, M̈uller MM, Pittermann E, Grisold W (2002) Wolfgang FACS analysisa new and accurate tool in the diagnosis of lymphoma in the cerebrospinal fluid. Clin chim Acta 317(1–2):101–107CrossRefGoogle Scholar
  24. Yamada K, Suzuki H, Takeuchi T, Kazama Y, Mitra S, Abe T, Goda K, Suzuki K, Iwata O (2016) Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci Rep 6:26327–26335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Micro-Nano Mechanical Science and EngineeringNagoya UniverisityNagoyaJapan
  2. 2.Institutes of Innovation for Future SocietyNagoya UniverisityNagoyaJapan

Personalised recommendations