Advertisement

A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics

  • Qingming Hu
  • Yukun RenEmail author
  • Xu ZhengEmail author
  • Likai Hou
  • Tianyi Jiang
  • Weiyu Liu
  • Ye Tao
  • Hongyuan JiangEmail author
Research Paper
  • 170 Downloads
Part of the following topical collections:
  1. 2018 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Beijing, China

Abstract

Monodisperse micro-sized liquid metal droplets have received considerable attention for developing flexible electronics, microfluidics actuators and reconfigurable devices. Herein we report an innovative and efficient strategy for large-scale preparation of Galinstan liquid metal microdroplets with controllable sizes using a micro-needle induced glass capillary microfluidic device. By inserting a stainless steel micro-needle into the inner liquid metal phase in the glass capillary, the hydrodynamic instability of the liquid metal stream is significantly suppressed to guarantee steady fluid flow before the liquid metal is pinched off by the outer phase flow, giving rise to a stable generation of monodisperse liquid metal microdroplets. The microdroplet size dependence on the flow ratio of the continuous and dispersed-phase is investigated experimentally. A theoretical framework based on the Plateau–Rayleigh instability is proposed to explain the advantage of the micro-needle induced strategy. This strategy has great potential for the generation of high interfacial tension liquid metal emulsions.

Keywords

Micro-needle induced Liquid metal Glass capillary microfluidic Hydrodynamic instability Plateau–Rayleigh instability 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 11672095, 11802078, 11702035 and 11572335), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant no. 51521003), the CAS Key Research Program of Frontier Sciences (QYZDB-SSW-JSC036), the CAS Strategic Priority Research Program (XDB22040403), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant no. UNPYSCT-2018104).

Supplementary material

Supplementary material 1 (WMV 5385 KB)

Supplementary material 2 (WMV 1816 KB)

References

  1. Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94:144103.  https://doi.org/10.1063/1.3114381 CrossRefGoogle Scholar
  2. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed Engl 47:142–144.  https://doi.org/10.1002/anie.200703642 CrossRefGoogle Scholar
  3. Davis E, Ndao S (2018) On the wetting states of low melting point metal Galinstan® on silicon microstructured surfaces. Adv Eng Mater 20:1700829CrossRefGoogle Scholar
  4. de Gennes P-G, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York, pp 119–122CrossRefGoogle Scholar
  5. Dickey MD (2017) Stretchable and Soft Electronics using. Liq Met Adv Mater 29:1606425 doi.  https://doi.org/10.1002/adma.201606425 CrossRefGoogle Scholar
  6. Fang W-Q, He Z-Z, Liu J (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105:134104.  https://doi.org/10.1063/1.4897309 CrossRefGoogle Scholar
  7. Fang J, Davoudi M, Chase G (2015) Drop movement along a fiber axis due to pressure driven air flow in a thin slit. Sep Purif Technol 140:77–83CrossRefGoogle Scholar
  8. Gol B, Tovar-Lopez FJ, Kurdzinski ME, Tang SY, Petersen P, Mitchell A, Khoshmanesh K (2015) Continuous transfer of liquid metal droplets across a fluid–fluid interface within an integrated microfluidic chip. Lab Chip 15:2476–2485.  https://doi.org/10.1039/c5lc00415b CrossRefGoogle Scholar
  9. Gol B, Kurdzinski ME, Tovar-Lopez FJ, Petersen P, Mitchell A, Khoshmanesh K (2016) Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system. Appl Phys Lett 108:164101.  https://doi.org/10.1063/1.4947272 CrossRefGoogle Scholar
  10. Hohman JN, Kim M, Wadsworth GA, Bednar HR, Jiang J, LeThai MA, Weiss PS (2011) Directing substrate morphology via self-assembly: ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett 11:5104–5110.  https://doi.org/10.1021/nl202728j CrossRefGoogle Scholar
  11. Hou L, Ren Y, Jia Y, Deng X, Liu W, Feng X, Jiang H (2017) Continuously electrotriggered core coalescence of double-emulsion drops for microreactions ACS. Appl Mater Interfaces 9:12282–12289.  https://doi.org/10.1021/acsami.7b00670 CrossRefGoogle Scholar
  12. Hu L, Li J, Tang J, Liu J (2017) Surface effects of liquid metal amoeba. Sci Bull 62:700–706.  https://doi.org/10.1016/j.scib.2017.04.015 CrossRefGoogle Scholar
  13. Jamali M, Tafreshi HV, Pourdeyhimi B (2018) Droplet mobility on hydrophobic fibrous coatings comprising. Orthogonal Fibers Langmuir 34:12488–12499Google Scholar
  14. Jia Y et al (2018) Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab Chip 18:1121–1129.  https://doi.org/10.1039/c7lc01387f CrossRefGoogle Scholar
  15. Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective. Permeab Adv Mater 20:3498–3503.  https://doi.org/10.1002/adma.200800918 CrossRefGoogle Scholar
  16. Liang S et al (2017) Liquid metal sponges for mechanically durable, all-soft, electrical conductors. J Mater Chem C 5:1586–1590.  https://doi.org/10.1039/c6tc05358k CrossRefGoogle Scholar
  17. Lu Y et al (2015) Transformable liquid-metal nanomedicine. Nat Commun 6:10066.  https://doi.org/10.1038/ncomms10066 CrossRefGoogle Scholar
  18. Manzo GM, Wu Y, Chase GG, Goux A (2016) Comparison of nonwoven glass and stainless steel microfiber media in aerosol coalescence filtration. Sep Purif Technol 162:14–19CrossRefGoogle Scholar
  19. Mohammed M, Xenakis A, Dickey M (2014) Production of liquid metal. Spheres Molding Met 4:465–476.  https://doi.org/10.3390/met4040465 CrossRefGoogle Scholar
  20. Sen P, Chang-Jin K (2009) A fast liquid-metal droplet microswitch using EWOD-driven contact-line sliding. J Microelectromech Syst 18:174–185.  https://doi.org/10.1109/jmems.2008.2008624 CrossRefGoogle Scholar
  21. Shah RK et al (2008) Designer emulsions using microfluidics. Mater Today 11:18–27.  https://doi.org/10.1016/S1369-7021(08)70053-1 CrossRefGoogle Scholar
  22. Shay T, Velev OD, Dickey MD (2018) Soft electrodes combining hydrogel and liquid metal. Soft Matter 14:3296–3303.  https://doi.org/10.1039/c8sm00337h CrossRefGoogle Scholar
  23. Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653.  https://doi.org/10.1021/la801833a CrossRefGoogle Scholar
  24. Sivan V, Tang S-Y, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A (2013) Liquid metal marbles. Adv Funct Mater 23:144–152.  https://doi.org/10.1002/adfm.201200837 CrossRefGoogle Scholar
  25. Tang S-Y et al (2014a) Liquid metal enabled pump. Proc Natl Acad Sci 111:3304–3309CrossRefGoogle Scholar
  26. Tang SY et al (2014b) Liquid metal actuator for inducing chaotic advection. Adv Funct Mater 24:5851–5858CrossRefGoogle Scholar
  27. Tang J, Zhou Y, Liu J, Wang J, Zhu W (2015) Liquid metal actuated ejector vacuum system. Appl Phys Lett 106:031901.  https://doi.org/10.1063/1.4906098 CrossRefGoogle Scholar
  28. Tang S-Y, Ayan B, Nama N, Bian Y, Lata JP, Guo X, Huang TJ (2016) On-chip production of size-controllable liquid metal microdroplets using acoustic waves. Small 12:3861–3869.  https://doi.org/10.1002/smll.201600737 CrossRefGoogle Scholar
  29. Thelen J, Dickey MD, Ward T (2012) A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing Lab. on a Chip 12:3961–3967.  https://doi.org/10.1039/C2LC40492C CrossRefGoogle Scholar
  30. Utada A, Lorenceau E, Link D, Kaplan P, Stone H, Weitz D (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541CrossRefGoogle Scholar
  31. Wei Z et al (2014) Liquid metal/metal oxide frameworks. Adv Funct Mater 24:3799–3807.  https://doi.org/10.1002/adfm.201304064 CrossRefGoogle Scholar
  32. Wissman J, Dickey MD, Majidi C (2017) Field-controlled electrical switch with liquid metal. Adv Sci (Weinh) 4:1700169.  https://doi.org/10.1002/advs.201700169 CrossRefGoogle Scholar
  33. Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys 166:234–240.  https://doi.org/10.1016/j.sna.2009.12.008 CrossRefGoogle Scholar
  34. Yu Y, Wang Q, Yi L, Liu J (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal. Droplets Adv Eng Mater 16:255–262 doi.  https://doi.org/10.1002/adem.201300420 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.School of Mechatronics EngineeringQiqihar UniversityQiqiharPeople’s Republic of China
  3. 3.State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.School of Electronics and Control EngineeringChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations