Advertisement

Virus concentration and purification by a microfluidic filtering system with an integrated PEGylated antifouling membrane

  • Sangil KimEmail author
  • Dietrich Dehlinger
  • José Peña
  • Hyang Seol
  • Maxim Shusteff
  • Nicole M. Collette
  • Maher Elsheikh
  • Matthew Davenport
  • Pejman Naraghi-Arani
  • Elizabeth Wheeler
Research Paper
  • 110 Downloads

Abstract

We present the integration of a nanoporous membrane functionalized with hydrophilic polymer brushes, poly(ethylene glycol) methacrylate (PEGMA), into a microfluidic device. In order to prevent damage to functional groups on the membrane surfaces, the PEGMA-modified membrane was directly bonded using an intermediate UV-curable adhesive layer by employing the modified “Stamp-and-Stick (SAS)” method and operated at high pressures. We demonstrated that the degree of flux recovery (RFR) of the functionalized membrane during testing with bovine serum albumin, that reached 93% after a cleaning process while unmodified membranes showed only 63% of RFR. The viral particle recovery efficiency and concentration factor were 60.41% and 6.04, respectively.

Keywords

Sample preparation Microfluidic diagnostic platforms Membrane separation 

Notes

Acknowledgements

This work was supported by Lawrence Livermore National Laboratory and the Defense Advanced Research Planning Agency. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

References

  1. Amato L, Gu Y, Bellini N, Eaton SM, Cerullo G, Osellame R (2012) Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip 12:1135–1142.  https://doi.org/10.1039/C2LC21116E CrossRefGoogle Scholar
  2. Aran K, Sasso LA, Kamdar N, Zahn JD (2010) Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip 10:548–552.  https://doi.org/10.1039/b924816a CrossRefGoogle Scholar
  3. Boxshall K, Wu M-H, Cui Z, Cui Z, Watts JF, Baker MA (2006) Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surf Interface Anal 38:198–201.  https://doi.org/10.1002/sia.2274 CrossRefGoogle Scholar
  4. Chang Y, Shih Y-J, Ruaan R-C, Higuchi A, Chen W-Y, Lai J-Y (2008) Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. J Memb Sci 309:165–174CrossRefGoogle Scholar
  5. Chang Y et al (2009) Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. J Memb Sci 345:160–169.  https://doi.org/10.1016/j.memsci.2009.08.039 CrossRefGoogle Scholar
  6. Chen D, Du H (2007) A dielectrophoretic barrier-based microsystem for separation of microparticles. Microfluid Nanofluid 3:603–610.  https://doi.org/10.1007/s10404-007-0151-x CrossRefGoogle Scholar
  7. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104:18892–18897.  https://doi.org/10.1073/pnas.0704958104 CrossRefGoogle Scholar
  8. Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial. Focus Anal Chem 80:2204–2211.  https://doi.org/10.1021/ac702283m CrossRefGoogle Scholar
  9. Dürr M, Kentsch J, Müller T, Schnelle T, Stelzle M (2003) Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24:722–731  https://doi.org/10.1002/elps.200390087 CrossRefGoogle Scholar
  10. Hill VR, Kahler AM, Jothikumar N, Johnson TB, Hahn D, Cromeans TL (2007) Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl Environ Microbiol 73:4218–4225.  https://doi.org/10.1128/aem.02713-06 CrossRefGoogle Scholar
  11. Ho NT, Fan A, Klapperich CM, Cabodi M (2012) Sample concentration and purification for point-of-care diagnostics. In: 34th annual international conference of the IEEE EMBS, 28 August–1 September, pp 2396–2399.  https://doi.org/10.1109/EMBC.2012.6346446
  12. Ji H, Samper V, Chen Y, Heng C, Lim T, Yobas L (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10:251–257.  https://doi.org/10.1007/s10544-007-9131-x CrossRefGoogle Scholar
  13. Kang JH, Park J-K (2007) Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. Small 3:1784–1791.  https://doi.org/10.1002/smll.200700334 CrossRefGoogle Scholar
  14. Karim MR, Rhodes ER, Brinkman N, Wymer L, Fout GS (2009) New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microbiol 75:2393–2399.  https://doi.org/10.1128/aem.00922-08 CrossRefGoogle Scholar
  15. Lee KS, Ram RJ (2009) Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics. Lab Chip 9:1618–1624.  https://doi.org/10.1039/B820924C CrossRefGoogle Scholar
  16. Lin C-C, Chen A, Lin C-H (2008) Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach. Biomed Microdevices 10:55–63.  https://doi.org/10.1007/s10544-007-9109-8 CrossRefGoogle Scholar
  17. Liu P, Hill VR, Hahn D, Johnson TB, Pan Y, Jothikumar N, Moe CL (2012) Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J Microbiol Methods 88:155–161.  https://doi.org/10.1016/j.mimet.2011.11.007 CrossRefGoogle Scholar
  18. McCloskey KE, Chalmers JJ, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75:6868–6874.  https://doi.org/10.1021/ac034315j CrossRefGoogle Scholar
  19. Mull B, Hill VR (2009) Recovery and detection of Escherichia coli O157:H7 in surface water, using ultrafiltration and real-time PCR. Appl Environ Microbiol 75:3593–3597.  https://doi.org/10.1128/aem.02750-08 CrossRefGoogle Scholar
  20. Park S, Zhang Y, Wang T-H, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11:2893–2900.  https://doi.org/10.1039/C1LC20307J CrossRefGoogle Scholar
  21. Puchberger-Enengl D, Podszun S, Heinz H, Hermann C, Vulto P, Urban GA (2011) Microfluidic concentration of bacteria by on-chip electrophoresis. Biomicrofluidics 5:044111.  https://doi.org/10.1063/1.3664691 CrossRefGoogle Scholar
  22. Rajal VB, McSwain BS, Thompson DE, Leutenegger CM, Kildare BJ, Wuertz S (2007) Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Res 41:1411–1422.  https://doi.org/10.1016/j.watres.2006.12.034 CrossRefGoogle Scholar
  23. Rutjes SA, Italiaander R, van den Berg H, Lodder WJ, Husman AMD (2005) Isolation and detection of enterovirus RNA from large-volume water samples by using the NucliSens miniMAG system and real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 71:3734–3740.  https://doi.org/10.1128/aem.71.7.3734-3740.2005 CrossRefGoogle Scholar
  24. Satyanarayana S, Karnik RN, Majumdar A (2005) Stamp-and-stick room-temperature bonding technique for microdevices. J Microelectromech Syst 14:392–399.  https://doi.org/10.1109/JMEMS.2004.839334 CrossRefGoogle Scholar
  25. Su Y, Li C, Zhao W, Shi Q, Wang H, Jiang Z, Zhu S (2008) Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. J Memb Sci 322:171–177.  https://doi.org/10.1016/j.memsci.2008.05.047 CrossRefGoogle Scholar
  26. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584.  https://doi.org/10.1126/science.1076996 CrossRefGoogle Scholar
  27. Wang S, Sarenac D, Chen MH, Huang S-H, Giguel FF, Kuritzkes DR, Demirci U (2012) Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int J Nanomed 7:5019–5028.  https://doi.org/10.2147/IJN.S32579 CrossRefGoogle Scholar
  28. Wu D, Steckl AJ (2009) High speed nanofluidic protein accumulator. Lab Chip 9:1890–1896.  https://doi.org/10.1039/B823409D CrossRefGoogle Scholar
  29. Zhang J, Mahalanabis M, Liu L, Chang J, Pollock N, Klapperich C (2013a) A disposable microfluidic virus concentration device based on evaporation and interfacial tension. Diagnostics 3:155–169CrossRefGoogle Scholar
  30. Zhang Y, Riley LK, Lin M, Purdy GA, Hu Z (2013b) Development of a virus concentration method using lanthanum-based chemical flocculation coupled with modified membrane filtration procedures. J Virol Methods 190:41–48.  https://doi.org/10.1016/j.jviromet.2013.03.017 CrossRefGoogle Scholar
  31. Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, Tai Y-C (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161.  https://doi.org/10.1016/j.chroma.2007.05.064 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sangil Kim
    • 1
    • 2
    • 3
    Email author
  • Dietrich Dehlinger
    • 1
  • José Peña
    • 1
  • Hyang Seol
    • 2
  • Maxim Shusteff
    • 1
  • Nicole M. Collette
    • 1
  • Maher Elsheikh
    • 1
  • Matthew Davenport
    • 1
  • Pejman Naraghi-Arani
    • 1
  • Elizabeth Wheeler
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Chemical EngineeringUniversity of IllinoisChicagoUSA
  3. 3.Department of Chemical & Petroleum EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations