Advertisement

Arrays of high aspect ratio magnetic microstructures for large trapping throughput in lab-on-chip systems

  • Samir Mekkaoui
  • Damien Le Roy
  • Marie-Charlotte Audry
  • Joël Lachambre
  • Véronique Dupuis
  • Jérôme Desgouttes
  • Anne-Laure Deman
Research Paper
  • 110 Downloads

Abstract

Here we report a novel technology to obtain arrays of highly efficient magnetic micro-traps that relies on simple fabrication process. Developed micro-traps consist in chains of iron particles diluted in polydimethylsiloxane (PDMS). We analyzed the microstructure of the composite membrane by X-ray tomography. It revealed the predominance of aligned chain-like agglomerates. Largest traps, with diameter ranging from 4 to 11 µm, are found to be the most efficient. The trap arrays were characterized by a density of 1300 magnetic micro-traps/mm2, an average nearest neighbor distance of 21 µm. Implemented in a microfluidic channel operating at a relatively high flow rate of 0.97 µL/s—a flow velocity of 8.3 mm/s—we measured a trapping efficiency of more than 99.7%, with a throughput of up to 7100 trapped beads/min. These performances are competitive with other approaches like hydrodynamic trapping. The strengths of this technology are its simple fabrication and easy handling.

Keywords

Lab-on-Chip Magnetophoresis Self-organization Single cell analysis 

Notes

Acknowledgements

We wish to acknowledge support for the project from Ecole doctorale EEA and regional AURA financial support, Nanolyon technological platform, MATEIS lab for X-ray tomography analyses, and A. Piednoir for AFM characterization at ILM.

References

  1. Arnold DP, Wang N (2009) Permanent magnets for MEMS. J Microelectromech Syst 18:1255–1266CrossRefGoogle Scholar
  2. Cetin B, Özer MB, Solmaz ME (2014) Microfluidic bio-particle manipulation for biotechnology. Biochem Eng J 92:63–82CrossRefGoogle Scholar
  3. Chen P, Huang Y-Y, Hoshino K, Zhang X (2014) Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips. Lab Chip 14:446–458CrossRefGoogle Scholar
  4. Chen H, Sun J, Wolvetang E, Cooper-White J (2015) High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices. Lab Chip 15:1072–1083CrossRefGoogle Scholar
  5. Coey JMD (2011) Hard magnetic materials: a perspective. IEEE Trans Magn 47:4671–4681CrossRefGoogle Scholar
  6. Delapierre F-D, Mottet G, Taniga V et al (2017) High throughput micropatterning of interspersed cell arrays using capillary assembly. Biofabrication 9:015015CrossRefGoogle Scholar
  7. Deman A-L, Chateaux J-F, Dhungana D et al (2017) Anisotropic composite polymer for high magnetic forces in microfluidic systems. Microfluid NanofluidicsGoogle Scholar
  8. Dempsey NM, Walther A, May F et al (2007) High performance hard magnetic NdFeB thick films for integration into micro-electro-mechanical systems. Appl Phys Lett 90:092509CrossRefGoogle Scholar
  9. Dempsey NM, Le Roy D, Marelli-Mathevon H et al (2014) Micro-magnetic imprinting of high field gradient magnetic flux sources. Appl Phys Lett 104:262401CrossRefGoogle Scholar
  10. Dumas-Bouchiat F, Zanini L-F, Kustov M et al (2010) Thermomagnetically patterned micromagnets. Appl Phys Lett 96:102511CrossRefGoogle Scholar
  11. Esmaeilsabzali H, Beischlag TV, Cox ME et al (2016) An integrated microfluidic chip for immunomagnetic detection and isolation of rare prostate cancer cells from blood. Biomed Microdevices 18:22CrossRefGoogle Scholar
  12. Faivre M, Gelszinnis R, Degouttes J et al (2014) Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures. Biomicrofluidics 8:054103CrossRefGoogle Scholar
  13. Forbes TP, Forry SP (2012) Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 12:1471–1479CrossRefGoogle Scholar
  14. Ghosh S, Puri IK (2013) Soft polymer magnetic nanocomposites: microstructure patterning by magnetophoretic transport and self-assembly. Soft Matter 9:2024–2029CrossRefGoogle Scholar
  15. Günther D, Borin DY, Günther S, Odenbach S (2011) X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Mater Struct 21:015005CrossRefGoogle Scholar
  16. Henighan T, Chen A, Vieira G et al (2010) Manipulation of magnetically labeled and unlabeled cells with mobile magnetic traps. Biophys J 98:412–417CrossRefGoogle Scholar
  17. Hosic S, Murthy SK, Koppes AN (2015) Microfluidic sample preparation for single cell analysis. Anal Chem 88:354–380CrossRefGoogle Scholar
  18. Jaiswal D, Rad AT, Nieh M-P et al (2017) Micromagnetic cancer cell immobilization and release for real-time single cell analysis. J Magn Magn Mater 427:7–13CrossRefGoogle Scholar
  19. Jung Y, Choi Y, Han K-H, Frazier AB (2010) Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdevices 12:637–645CrossRefGoogle Scholar
  20. Khashan SA, Furlani EP (2014) Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep Purif Technol 125:311–318CrossRefGoogle Scholar
  21. Kim H, Lee S, Kim J (2012) Hydrodynamic trap-and-release of single particles using dual-function elastomeric valves: design, fabrication, and characterization. Microfluid Nanofluidics 13:835–844CrossRefGoogle Scholar
  22. Le Roy D, Shaw G, Haettel R et al (2016a) Fabrication and characterization of polymer membranes with integrated arrays of high performance micro-magnets. Mater Today Commun 6:50–55CrossRefGoogle Scholar
  23. Le Roy D, Dhungana D, Ourry L et al (2016b) Anisotropic ferromagnetic polymer: a first step for their implementation in microfluidic systems. AIP Adv 6:056604CrossRefGoogle Scholar
  24. Li J, Zhang M, Wang L et al (2011) Design and fabrication of microfluidic mixer from carbonyl iron-PDMS composite membrane. Microfluid Nanofluidics 10:919–925CrossRefGoogle Scholar
  25. Marchi S, Casu A, Bertora F et al (2015) Highly magneto-responsive elastomeric films created by a two-step fabrication process. ACS Appl Mater Interfaces 7:19112–19118CrossRefGoogle Scholar
  26. McDonald JC, Duffy DC, Anderson JR et al (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophor Int J 21:27–40CrossRefGoogle Scholar
  27. Mohamadi RM, Besant JD, Mepham A et al (2015) Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. Angew Chem 127:141–145CrossRefGoogle Scholar
  28. Nam J, Huang H, Lim H et al (2013) Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal Chem 85:7316–7323CrossRefGoogle Scholar
  29. Narayanamurthy V, Nagarajan S, Samsuri F, Sridhar T (2017a) Microfluidic hydrodynamic trapping for single cell analysis: mechanisms, methods and applications. Anal Methods 9:3751–3772CrossRefGoogle Scholar
  30. Narayanamurthy V, Nagarajan S, Samsuri F, Sridhar T (2017b) Microfluidic hydrodynamic trapping for single cell analysis: mechanisms, methods and applications. Anal MethodsGoogle Scholar
  31. Portemont C (2006) Etude de l’anisotropie d’échange dans des agrégats de cobalt nanométriques, Matiere Condensée [cond-mat]. Université Joseph Fourier-Grenoble I, Français. P. 42Google Scholar
  32. Rampini S, Li P, Lee G (2016) Micromagnet arrays enable precise manipulation of individual biological analyte—superparamagnetic bead complexes for separation and sensing. Lab Chip 16:3645–3663CrossRefGoogle Scholar
  33. Rasponi M, Piraino F, Sadr N et al (2011) Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation. Microfluid Nanofluidics 10:1097–1107CrossRefGoogle Scholar
  34. Renaud L, Selloum D, Tingry S (2015) Xurography for 2D and multi-level glucose/O 2 microfluidic biofuel cell. Microfluid Nanofluidics 18:1407–1416CrossRefGoogle Scholar
  35. Royet D, Hériveaux Y, Marchalot J et al (2017) Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices. J Magn Magn Mater 427:306–313CrossRefGoogle Scholar
  36. Saliba A-E, Saias L, Psychari E et al (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci 107:14524–14529CrossRefGoogle Scholar
  37. Tekin HC, Gijs MA (2013) Ultrasensitive protein detection: a case for microfluidic magnetic bead-based assays. Lab Chip 13:4711–4739CrossRefGoogle Scholar
  38. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  39. Xu X, Li Z, Kotagiri N et al (2013) Microfluidic microsphere-trap arrays for simultaneous detection of multiple targets. International Society for Optics and Photonics, p 86151EGoogle Scholar
  40. Yesilkoy F, Ueno R, Desbiolles B et al (2016) Highly efficient and gentle trapping of single cells in large microfluidic arrays for time-lapse experiments. Biomicrofluidics 10:014120CrossRefGoogle Scholar
  41. Yu X, Feng X, Hu J et al (2011) Controlling the magnetic field distribution on the micrometer scale and generation of magnetic bead patterns for microfluidic applications. Langmuir 27:5147–5156CrossRefGoogle Scholar
  42. Zanini L-F, Dempsey NM, Givord D et al (2011) Autonomous micro-magnet based systems for highly efficient magnetic separation. Appl Phys Lett 99:232504CrossRefGoogle Scholar
  43. Zhou R, Wang C (2016) Microfluidic separation of magnetic particles with soft magnetic microstructures. Microfluid Nanofluidics 20:48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Université Lyon 1VilleurbanneFrance
  2. 2.Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1VilleurbanneFrance
  3. 3.Laboratoire Matériaux, Ingénierie et Sciences (MATEIS)INSA-Lyon, CNRS, UMR 5510VilleurbanneFrance

Personalised recommendations