Advertisement

Microfluidic two-phase interactions under variable liquid to cross-flow gas momentum flux ratios

  • Abbas Ghasemi
  • Xianguo Li
Research Paper
  • 166 Downloads

Abstract

Volume of fluid (VOF) and large eddy simulations (LES) are coupled to investigate the microfluidic two-phase interactions during the liquid emergence into the cross-flow gas in a super-hydrophobic micro-channel. Spatio-temporal evolution of the gas/liquid interface is presented for nine different cases of the liquid to gas momentum flux ratios, gas/liquid Reynolds numbers and gas/liquid Weber numbers. With increased momentum of the gas flow, the liquid topology is found deflected towards the downstream. Under variable gas resistance effects, the liquid flow emerging through the square pore may or may not develop a circular cross-section governed by the axis-switching phenomenon. At strong gas inertia, vortex shedding in the downstream of the liquid generates vorticular ligaments in the wake region. Shearing effects on the liquid surface are increased at higher liquid injection velocities and/or gas densities. Depending on the competing effects of the viscous diffusion versus gas/liquid inertia, different combinations of the interactions among the three building blocks of the fluid flow problems (boundary layer, shear layer and wake) are described in microfluidics scales. The complexity of the liquid topology is found correlated with the occurrence of the phenomena such as the Kelvin–Helmholtz (KH) instability, the horseshoe vortex system, stationary/shedding vortices in the wake of the liquid topology as well as their interaction with the micro-channel wall boundary layers.

Keywords

Microfluidics Droplets Vorticity 

List of symbols

\(Bo={\varDelta }\rho g D^{2}/\sigma\)

Eotvos or Bond (Bo) number

\(\mathrm{CFL}_{u}= U_\mathrm{max} \delta t/ {\varDelta }\)

CFL number

D

Width of the square pore

\(F_\mathrm{p}\)

Pressure force

g

Gravitational acceleration

\(Kn = \lambda /w\)

Knudsen number

\(L=9.5D\)

Length of the micro-channel

p

Pressure

\(q= \rho _\mathrm{l} {U_\mathrm{l}}^{2}/\rho _\mathrm{g} {U_\mathrm{g}}^{2}\)

Liquid to gas momentum flux ratio

\(Re_\mathrm{g}= DU_\mathrm{g}/\nu _\mathrm{g}\)

Gas Reynolds number

\(Re_\mathrm{l}= DU_\mathrm{l}/\nu _\mathrm{l}\)

Liquid Reynolds number

\(T^{*} = U_\mathrm{l}t/D\)

Dimensionless time

\(t^{*}=20T^{*}\)

Dimensionless time

\(T_\mathrm{g}\)

Gas temperature

\(T_\mathrm{l}\)

Liquid temperature

\(\mathbf {u} \,(u, v, w)\)

Velocity vector

\(U_\mathrm{g}\)

Gas inlet velocity

\(U_\mathrm{l}\)

Liquid inlet velocity

\(W=4D\)

Width of the square micro-channel

\(We_\mathrm{g}= \rho _\mathrm{g} {U_\mathrm{g}}^{2} D/\sigma\)

Gas Weber number

\(We_\mathrm{l}= \rho _\mathrm{l} {U_\mathrm{l}}^{2} D/\sigma\)

Liquid Weber number

\(\alpha\)

Void fraction

\({\varDelta }\)

LES filter width

\(\delta t\)

Time step

\(\kappa\)

Curvature of the gas/liquid interface

\(\lambda\)

Mean free path of the gas molecules

\(\mu\)

Dynamic viscosity

\(\mu _\mathrm{g}\)

Gas phase dynamic viscosity

\(\mu _\mathrm{l}\)

Liquid phase dynamic viscosity

\(\nu _\mathrm{g}\)

Gas phase kinematic viscosity

\(\nu _\mathrm{l}\)

Liquid phase kinematic viscosity

\(\rho\)

Density

\(\rho _\mathrm{g}\)

Gas phase density

\(\rho _\mathrm{l}\)

Liquid phase density

\({\varOmega }^{*} = {\varOmega }D/U_\mathrm{g}\)

Dimensionless vorticity magnitude

\({\omega _{y}}^{*} = \omega _{y} D/U_\mathrm{g}\)

Dimensionless y-vorticity

\({\omega _{z}}^{*} = \omega _{z} D/U_\mathrm{g}\)

Dimensionless z-vorticity

\(\sigma\)

Surface tension

Notes

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) via a Discovery Grant, and Ontario Centres of Excellence (OCE) TalentEdge Internship Program (TIP) under the Project Numbers 25398 and 25657.

Supplementary material

10404_2018_2140_MOESM1_ESM.mp4 (686 kb)
Supplementary material 1 (mp4 685 KB)
10404_2018_2140_MOESM2_ESM.mp4 (439 kb)
Supplementary material 2 (mp4 438 KB)
10404_2018_2140_MOESM3_ESM.mp4 (564 kb)
Supplementary material 3 (mp4 563 KB)
10404_2018_2140_MOESM4_ESM.mp4 (2 mb)
Supplementary material 4 (mp4 2010 KB)
10404_2018_2140_MOESM5_ESM.mp4 (2.5 mb)
Supplementary material 5 (mp4 2553 KB)
10404_2018_2140_MOESM6_ESM.mp4 (1.9 mb)
Supplementary material 6 (mp4 1901 KB)
10404_2018_2140_MOESM7_ESM.mp4 (7.1 mb)
Supplementary material 7 (mp4 7235 KB)
10404_2018_2140_MOESM8_ESM.mp4 (5.6 mb)
Supplementary material 8 (mp4 5694 KB)
10404_2018_2140_MOESM9_ESM.mp4 (3.4 mb)
Supplementary material 9 (mp4 3527 KB)

References

  1. Acarlar M, Smith C (1987) A study of hairpin vortices in a laminar boundary layer. Part 2. Hairpin vortices generated by fluid injection. J Fluid Mech 175:43–83CrossRefGoogle Scholar
  2. Amini G, Lv Y, Dolatabadi A, Ihme M (2014) Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis. Phys Fluids 26(11):114105CrossRefGoogle Scholar
  3. Anderson R, Zhang L, Ding Y, Blanco M, Bi X, Wilkinson DP (2010) A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J Power Sources 195(15):4531–4553CrossRefGoogle Scholar
  4. Bauer AF, McCarthy J, Giacobello M (2018) Flow visualisation around a hemispherical protuberance in the dst group water tunnel. School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney TR3482:1–22Google Scholar
  5. Chang CL, Choudhari MM (2011) Hypersonic viscous flow over large roughness elements. Theor Comput Fluid Dyn 25(1–4):85–104CrossRefGoogle Scholar
  6. Chen KS, Hickner MA, Noble DR (2005) Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface. Int J Energy Res 29(12):1113–1132CrossRefGoogle Scholar
  7. Cho SC, Wang Y, Chen KS (2012) Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: forces, deformation, and detachment. I: Theoretical and numerical analyses. J Power Sources 206:119–128CrossRefGoogle Scholar
  8. Choi P, Datta R (2003) Sorption in proton-exchange membranes an explanation of Schroeders paradox. J Electrochem Soc 150(12):E601–E607CrossRefGoogle Scholar
  9. Colosqui CE, Cheah MJ, Kevrekidis IG, Benziger JB (2011) Droplet and slug formation in polymer electrolyte membrane fuel cell flow channels: the role of interfacial forces. J Power Sources 196(23):10057–10068CrossRefGoogle Scholar
  10. El Hassan M, Bourgeois J, Martinuzzi R (2015) Boundary layer effect on the vortex shedding of wall-mounted rectangular cylinder. Exp Fluids 56(2):33CrossRefGoogle Scholar
  11. Jennings S (1988) The mean free path in air. J Aerosol Sci 19(2):159–166CrossRefGoogle Scholar
  12. Jo JH, Kim WT (2015) Numerical simulation of water droplet dynamics in a right angle gas channel of a polymer electrolyte membrane fuel cell. Int J Hydrog Energy 40(26):8368–8383CrossRefGoogle Scholar
  13. Kang S, Zhou B, Cheng CH, Shiu HR, Lee CI (2011) Liquid water flooding in a proton exchange membrane fuel cell cathode with an interdigitated design. Int J Energy Res 35(15):1292–1311CrossRefGoogle Scholar
  14. Le AD, Zhou B, Shiu HR, Lee CI, Chang WC (2010) Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels. J Power Sources 195(21):7302–7315CrossRefGoogle Scholar
  15. Mancusi E, Fontana É, de Souza AAU, de Souza SMGU (2014) Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design. Int J Hydrog Energy 39(5):2261–2273CrossRefGoogle Scholar
  16. Mondal B, Jiao K, Li X (2011) Three-dimensional simulation of water droplet movement in PEM fuel cell flow channels with hydrophilic surfaces. Int J Energy Res 35(13):1200–1212CrossRefGoogle Scholar
  17. Motupally S, Becker AJ, Weidner JW (2000) Diffusion of water in nafion 115 membranes. J Electrochem Soc 147(9):3171–3177CrossRefGoogle Scholar
  18. Pasaogullari U, Wang CY (2004) Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim Acta 49(25):4359–4369CrossRefGoogle Scholar
  19. Richards K, Senecal P, Pomraning E (2013) Converge (version 2.1. 0) theory manual. Convergent Science, MiddletonGoogle Scholar
  20. Satija R, Jacobson DL, Arif M, Werner S (2004) In situ neutron imaging technique for evaluation of water management systems in operating pem fuel cells. J Power Sources 129(2):238–245CrossRefGoogle Scholar
  21. Portela Macedo, da Silva N, Letourneau JJ, Espitalier F, Prat L (2014) Transparent and inexpensive microfluidic device for two-phase flow systems with high-pressure performance. Chem Eng Technol 37(11):1929–1937CrossRefGoogle Scholar
  22. Waclawczyk T, Koronowicz T (2006) Modeling of the wave breaking with cicsam and hric high resolution schemes. In: Proceedings of the European conference on computational fluid dynamics, Egmondaan Zee, The NetherlandsGoogle Scholar
  23. Wang G, Yang F, Zhao W (2014) There can be turbulence in microfluidics at low Reynolds number. Lab Chip 14(8):1452–1458CrossRefGoogle Scholar
  24. Wang J, Bi W, Wei Q (2009) Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow. Exp Fluids 46(6):1093–1104CrossRefGoogle Scholar
  25. Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through nafion® 117 membranes. J Electrochem Soc 140(4):1041–1047CrossRefGoogle Scholar
  26. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S (1995) The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochim Acta 40(3):297–302CrossRefGoogle Scholar
  27. Zhang F, Yang X, Wang C (2006) Liquid water removal from a polymer electrolyte fuel cell. J Electrochem Soc 153(2):A225–A232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations