Advertisement

Electrokinetics in nanochannels grafted with poly-zwitterionic brushes

  • Guang Chen
  • Jahin Patwary
  • Harnoor Singh Sachar
  • Siddhartha Das
Research Paper
  • 152 Downloads

Abstract

In this paper, we compute the electrokinetic transport in soft nanochannels grafted with poly-zwitterionic (PZI) brushes. The transport is induced by an external pressure gradient, which drives the ionic cloud (in the form of an electric double layer or EDL) at the brush surfaces to induce an electric field that drives an induced electroosmotic transport. We characterize the overall transport by quantifying this electric field, overall flow velocity, and the energy conversion associated with the development of the electric field and a streaming current. We specially focus on how the ability of the PZI to ionize and demonstrate a significant charge at both large and small pH can be efficiently maneuvered to develop a liquid transport, an electric field, and an electrokinetically induced power across a wide range of pH values.

Notes

References

  1. Alexander S (1977) Polymer adsorption on small spheres. A scaling approach. J Phys 38:977CrossRefGoogle Scholar
  2. Ali M, Schiedt B, Healy K, Neumann R, Ensinger W (2008) Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology 19:085713CrossRefGoogle Scholar
  3. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130:16351CrossRefGoogle Scholar
  4. Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W (2009) A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3:603CrossRefGoogle Scholar
  5. Ali M, Schiedt B, Neumann R, Ensinger W (2010a) Biosensing with functionalized single asymmetric polymer nanochannels. Macromol Biosci 10:28CrossRefGoogle Scholar
  6. Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010b) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132:8338CrossRefGoogle Scholar
  7. Azzaroni O, Brown AA, Huck WTS (2006) UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew Chem Int Ed 118:1802CrossRefGoogle Scholar
  8. Baldessari F, Santiago JG (2008) Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interface Sci 325:526CrossRefGoogle Scholar
  9. Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716CrossRefGoogle Scholar
  10. Benson L, Yeh L-H, Chou T-H, Qian S (2013) Field effect regulation of donnan potential and electrokinetic flow in a functionalized soft nanochannel. Soft Matter 9:9767CrossRefGoogle Scholar
  11. Cao Q, You H (2016) Electroosmotic flow in mixed polymer brush-grafted nanochannels. Polymers 8:438CrossRefGoogle Scholar
  12. Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558CrossRefGoogle Scholar
  13. Chen G, Das S (2015a) Scaling laws and ionic current inversion in polyelectrolyte-grafted nanochannels. J Phys Chem B 119:12714CrossRefGoogle Scholar
  14. Chen G, Das S (2015b) Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. J Appl Phys 117:185304CrossRefGoogle Scholar
  15. Chen G, Das S (2015c) Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Adv 5:4493CrossRefGoogle Scholar
  16. Chen G, Das S (2015d) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hckel linearization. J Colloid Interface Sci 445:357CrossRefGoogle Scholar
  17. Chen G, Das S (2017a) Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes. Electrophoresis 38:720CrossRefGoogle Scholar
  18. Chen G, Das S (2017b) Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J Phys Chem B 121:3130CrossRefGoogle Scholar
  19. Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698CrossRefGoogle Scholar
  20. Chen M, Briscoe WH, Armes SP, Cohen H, Klein J (2011) Polyzwitterionic brushes: extreme lubrication by design. Eur Polym J 47:511CrossRefGoogle Scholar
  21. Chen G, Sachar HS, Das S (2018) Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. Soft Matter 14:5246CrossRefGoogle Scholar
  22. Cheng N, Brown AA, Azzaroni O, Huck WTS (2008) Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 41:6317CrossRefGoogle Scholar
  23. Daiguji H, Yang P, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315CrossRefGoogle Scholar
  24. Das S, Guha A, Mitra SK (2013) Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers. Anal Chim Acta 804:159CrossRefGoogle Scholar
  25. Das S, Chanda S, Eijkel JCT, Tas NR, Chakraborty S, Mitra SK (2014) Filling of charged cylindrical capillaries. Phys Rev E 90:043011CrossRefGoogle Scholar
  26. Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015) Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter 11:8550CrossRefGoogle Scholar
  27. de Gennes P-G (1976) Scaling theory of polymer adsorption. J Phys 37:1443Google Scholar
  28. de Gennes P-G (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069CrossRefGoogle Scholar
  29. de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vrös J, Vancso GJ (2013) Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl Mater Interface 5:1400CrossRefGoogle Scholar
  30. Fidale LC, Nikolajski M, Rudolph T, Dutz S, Schacher FH, Heinze T (2013) Hybrid Fe\(_3\)O\(_4\)@ amino cellulose nanoparticles in organic mediaheterogeneous ligands for atom transfer radical polymerizations. J Colloid Interface Sci 390:25CrossRefGoogle Scholar
  31. Gilles FM, Tagliazucchi M, Azzaroni O, Szleifer I (2016) Ionic conductance of polyelectrolyte-modified nanochannels: nanoconfinement effects on the coupled protonation equilibria of polyprotic brushes. J Phys Chem C 120:4789CrossRefGoogle Scholar
  32. Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16:8719CrossRefGoogle Scholar
  33. Guo X, Ballauff M (2001) Spherical polyelectrolyte brushes: comparison between annealed and quenched brushes. Phys Rev E 64:051406CrossRefGoogle Scholar
  34. Higaki Y, Kobayashi M, Murakami D, Takahara A (2016) Anti-fouling behavior of polymer brush immobilized surfaces. Polym J 48:325CrossRefGoogle Scholar
  35. Hoffmann M, Jusufi A, Schneider C, Ballauff M (2009) Surface potential of spherical polyelectrolyte brushes in the presence of trivalent counterions. J Colloid Interface Sci 338(566):566CrossRefGoogle Scholar
  36. Ilcikova M, Tkac J, Kasak P (2015) Switchable materials containing polyzwitterion moieties. Polymers 7:2344CrossRefGoogle Scholar
  37. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288CrossRefGoogle Scholar
  38. Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4:4987CrossRefGoogle Scholar
  39. Li F, Jian Y, Chang L, Zhao G, Yang L (2016) Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel. Colloid Surf B 147:234CrossRefGoogle Scholar
  40. Li H, Chen G, Das S (2016) Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloid Surf B 147:180CrossRefGoogle Scholar
  41. Li F, Jian Y, Xie Z, Liu Y, Liu Q (2017) Transient alternating current electroosmotic flow of a jeffrey fluid through a polyelectrolyte-grafted nanochannel. RSC Adv 7:782CrossRefGoogle Scholar
  42. Lin J-Y, Lin C-Y, Hsu J-P, Tseng S (2016) Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient. Anal Chem 88:1176CrossRefGoogle Scholar
  43. Lowe AB, McCormick CL (2006) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications. In: ACS Symposium Series, American Chemical SocietyGoogle Scholar
  44. Ma Y, Yeh L-H, Lin C-Y, Mei L, Qian S (2015) pH-regulated ionic conductance in a nanochannel with overlapped electric double layers. Anal Chem 87:4508CrossRefGoogle Scholar
  45. Milne Z, Yeh LH, Chou TH, Qian S (2014) Tunable donnan potential and electrokinetic flow in a biomimetic gated nanochannel with ph-regulated polyelectrolyte brushes. J Phys Chem C 118:19806CrossRefGoogle Scholar
  46. Milner ST (1991) Polymer brushes. Science 251:905CrossRefGoogle Scholar
  47. Monteil C, Bar N, Bee A, Villemin D (2016) An efficient recyclable magnetic material for the selective removal of organic pollutants. Beilstein J Nanotechnol 7:1447CrossRefGoogle Scholar
  48. Moya S, Azzaroni O, Farhan T, Osborne VL, Huck WTS (2005) Locking and unlocking of polyelectrolyte brushes: toward the ffabrication of chemically controlled nanoactuators. Angew Chem Int Ed 44:4578CrossRefGoogle Scholar
  49. Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380:1CrossRefGoogle Scholar
  50. Nguyen T, Xie Y, de Vreede LJ, van den Berg A, Eijkel JCT (2013) Highly enhanced energy conversion from the streaming current by polymer addition. Lab Chip 13:3210CrossRefGoogle Scholar
  51. Patwary J, Chen G, Das S (2015) Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluid Nanofluid 20:37CrossRefGoogle Scholar
  52. Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968CrossRefGoogle Scholar
  53. Saleh TA, Rachman IB, Ali SA (2017) Tailoring hydrophobic branch in polyzwitterionic resin for simultaneous capturing of Hg(II) and methylene blue with response surface optimization. Sci Rep 7:4573CrossRefGoogle Scholar
  54. ShamsiJazeyi H, Miller CA, Wong MS, Tour JM, Verduzco R, ShamsiJazeyi Hadi (2014) Polymer coated nanoparticles for enhanced oil recovery. J Appl Polym Sci 131:40576CrossRefGoogle Scholar
  55. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2015) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev.  https://doi.org/10.1016/j:addr.2015.09.012 CrossRefGoogle Scholar
  56. Tagliazucchi M, Szleifer I (2012) Stimuli-responsive polymers grafted to nanopores and other nano-curved surfaces: structure, chemical equilibrium and transport. Soft Matt. 8:7292CrossRefGoogle Scholar
  57. Tagliazucchi M, Azzaroni O, Szleifer I (2010) Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. J Am Chem Soc 132:12404CrossRefGoogle Scholar
  58. Umehara S, Karhanek M, Davis RW, Pourmand N (2009) Label-free biosensing with functionalized nanopipette probes. Proc Natl Acad Sci 106:4611CrossRefGoogle Scholar
  59. Urena-Benavides EE, Lin EL, Foster EL, Xue Z, Ortiz MR, Fei Y, Larsen ES, Kmetz AA, Lyon BA, Moaseri E, Bielawski CW, Pennell KD, Ellison CJ, Johnston KP (2016) Low adsorption of magnetite nanoparticles with uniform polyelectrolyte coatings in concentrated brine on model silica and sandstone. Ind Eng Chem Res 55:1522CrossRefGoogle Scholar
  60. van der Heyden FHJ, Stein D, Dekker C (2005) Streaming currents in a single nanofluidic channel. Phys Rev Lett 95:116104CrossRefGoogle Scholar
  61. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006a) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 7:2232CrossRefGoogle Scholar
  62. van der Heyden FHJ, Stein D, Besteman K, Lemay SG, Dekker C (2006b) Charge inversion at high ionic strength studied by streaming currents. Phys Rev Lett 96:224502CrossRefGoogle Scholar
  63. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7:1022CrossRefGoogle Scholar
  64. Vilozny B, Wollenberg AL, Actis P, Hwang D, Singaram B, Pourmand N (2013) Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette. Nanoscale 5:9214CrossRefGoogle Scholar
  65. Wang X, Xu J, Li L, Wu S, Chen Q, Lu Y, Ballauff M, Guo X (2010) Synthesis of spherical polyelectrolyte brushes by thermocontrolled emulsion polymerization. Macromol Rapid Commun 31:1272CrossRefGoogle Scholar
  66. Xiao W, Lin J, Li M, Ma Y, Chen Y, Zhang C, Li D, Gu H (2012) Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents. Contrast Media Mol Imaging 7:320CrossRefGoogle Scholar
  67. Xue S, Yeh LH, Ma Y, Qian S (2014) Tunable streaming current in a pH-regulated nanochannel by a field effect transistor. J Phys Chem C 118:6090CrossRefGoogle Scholar
  68. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying ph-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131:2070CrossRefGoogle Scholar
  69. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9:2788CrossRefGoogle Scholar
  70. Yeh L-H, Zhang M, Hu N, Joo SW, Qian S, Hsu J-P (2012a) Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes. Anal Chem 84:9615CrossRefGoogle Scholar
  71. Yeh L-H, Zhang M, Hu N, Joo SW, Qian S, Hsu J-P (2012b) Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes. Nanoscale 4:5169CrossRefGoogle Scholar
  72. Zeng Z, Yeh L-H, Zhang M, Qian S (2015) Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes. Nanoscale 7:17020CrossRefGoogle Scholar
  73. Zhao Y, Chen Y, Xiong X, Sun X, Zhang Q, Gan Y, Zhang L, Zhang W (2017) Synthesis of magnetic zwitterionichydrophilic material for the selective enrichment of N-linked glycopeptides. J Chromatogr A 1482:23CrossRefGoogle Scholar
  74. Zhou C, Mei L, Su Y-S, Yeh L-H, Zhang X, Qian S (2016) Gated ion transport in a soft nanochannel with biomimetic polyelectrolyte brush layers. Sens Actuators B 229:305CrossRefGoogle Scholar
  75. Zhulina EB, Borisov OV (2011) Poisson–Boltzmann theory of pH-sensitive (annealing) polyelectrolyte brush. Langmuir 27:10615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guang Chen
    • 1
  • Jahin Patwary
    • 1
  • Harnoor Singh Sachar
    • 1
  • Siddhartha Das
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations