Anisotropic composite polymer for high magnetic force in microfluidic systems

  • A.-L. DemanEmail author
  • S. Mekkaoui
  • D. Dhungana
  • J.-F. Chateaux
  • A. Tamion
  • J. Degouttes
  • V. Dupuis
  • D. Le Roy


Anisotropic carbonyl iron–polydimethylsiloxane (PDMS) composites were developed and implemented in microfluidic devices to serve as magnetic flux concentrators. These original materials provide technological solutions for heterogeneous integration with PDMS. Besides microfabrication advantages, they offer interesting modular magnetic properties. Applying an external magnetic field during the PDMS reticulation leads to the formation of 1D agglomerates of magnetic particles, organized in the non-magnetic polymer matrix. This induces an increase in susceptibility as compared to composites with randomly dispersed particles. In this report, we explored the gain in reachable magnetophoretic forces in operating microfluidic devices, from the study of magnetic microbeads motion injected in the microchannel. We show that even at relatively large distances from the magnetically functionalized channel wall, the anisotropic composite leads to a factor two increase in the magnetophoretic force. Finally, further investigations based on finite element description suggest that the measured benefit of anisotropic composite polymers does not only rely on the global susceptibility increase but also on the local magnetic field gradients originating from the microstructure.


Magnetophoretic force Magnetic anisotropy Composite polymer Microstructuration/local magnetic gradients 



The authors are indebted to the EEA doctoral school and the institute Carnot Ingénierie@Lyon and for their support and funding. This work was also supported by the University of Lyon 1, through its program “BQR Accueil EC 2015”. The authors are grateful to R. Checa for technical assistance at the “Centre de Magnétométrie de Lyon” and to N. Terrier for his technical support at the NanoLyon cleanroom facility.


  1. Cheng R, Zhu T, Mao L (2014) Three-dimensional and analytical modeling of microfluidic particle transport in magnetic fluids. Microfluid Nanofluidics 16:1143CrossRefGoogle Scholar
  2. Deman AL, Brun M, Quatresous M, Chateaux JF, Frenea-Robin M, Haddour N, Semet V, Ferrigno R (2011) Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems. J Micromech Microeng 21:095013CrossRefGoogle Scholar
  3. Dumas-Bouchiat F, Zanini LF, Kustov M, Dempsey NM, Grechishkin G, Hasselbach K, Orlianges JC, Champeaux C, Catherinot A, Givord G (2010) Thermomagnetically patterned micromagnets. Appl Phys Lett 96:102511CrossRefGoogle Scholar
  4. Esmaeilsabzali H, Beischlag TV, Cox ME, Dechev N, Parameswaran AM, Park AJ (2016) An integrated microfluidic chip for immunomagnetic detection and isolation of rare prostate cancer cells from blood. Biomed Microdevices 18:22CrossRefGoogle Scholar
  5. Faivre M, Gelszinnis R, Degouttes J, Terrier N, Rivière C, Ferrigno R, Deman AL (2014) Magnetophoretic manipulation in microsystem using carbonyl ironpolydimethylsiloxane microstructures. Biomicrofluidics 8:054103CrossRefGoogle Scholar
  6. Furlani EP (2010) Magnetic biotransport: analysis and applications. Materials 3:2412–2446CrossRefGoogle Scholar
  7. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563CrossRefGoogle Scholar
  8. Hejazian M, Li W, Nguyen N-T (2015) Lab on a chip for continuous-flow magnetic cell separation. Lab Chip 15:959CrossRefGoogle Scholar
  9. Jung Y, Choi Y, Han KH, Frazier AB (2010) Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdevices 12:637–645CrossRefGoogle Scholar
  10. Le Roy D, Dhungana D, Ourry L, Faivre M, Ferrigno R, Tamion A, Dupuis V, Deman AL (2016a) Anisotropic ferromagnetic polymer: a first step for their implementation in microfluidic systems. AIP Adv 6:056604CrossRefGoogle Scholar
  11. Le Roy D, Shaw G, Haettel R, Hasselbach K, Dumas-Bouchiat F, Givord D, Dempsey NM (2016b) Fabrication and characterization of polymer membranes with integrated arrays of high performance micro-magnets. Mater Today Commun 6:50–55CrossRefGoogle Scholar
  12. Lee TY, Hyun KA, Kim SI, Jung H (2017) An integrated microfluidic chip for one-step isolation of circulating tumor cells. Sens Actuators B Chem 238:1144–1150CrossRefGoogle Scholar
  13. Moore LR, Nehl F, Dorn J, Chalmers JJ, Zborowski M (2013) Open gradient magnetic red blood cell sorter evaluation on model cell mixtures. IEEE Trans Magn 49:309–315CrossRefGoogle Scholar
  14. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–36CrossRefGoogle Scholar
  15. Phurimsak C, Tarn MD, Peyman SA, Greenman J, Pamme N (2014) On-chip determination of C-reactive protein using magnetic particles in continuous flow. Anal Chem 86:10552–10559CrossRefGoogle Scholar
  16. Plouffe BD, Murthy SK, Lewis LH (2015) Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phys 78:016601CrossRefGoogle Scholar
  17. Royet D, Hériveaux Y, Marchalot J, Scorreti R, Dias A, Dempsey NM, Bonfilm M, Simonet P, Frenea-Robin M (2016) Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices. J Magn Magn Mater. CrossRefGoogle Scholar
  18. Tekin HC, Gijs MAM (2013) Ultrasensitive protein detection: a case for microfluidic magnetic bead-based assays. Lab Chip. CrossRefGoogle Scholar
  19. Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118CrossRefGoogle Scholar
  20. Wu WT, Martin AB, Gandini A, Aubry N, Massoudi M, Antaki JF (2016) Design of microfluidic channels for magnetic separation of malaria-infected red blood cells. Microfluid Nanofluidics 20:41CrossRefGoogle Scholar
  21. Yu X, Xia HS, Sun ZD, Wang K, Yu J, Tang H, Pang DW, Zhang ZL (2013) On-chip dual detection of cancer biomarkers directly in serum based on self-assembled magnetic bead patterns and quantum dots. Biosens Bioelectron 41:129–136CrossRefGoogle Scholar
  22. Yu X, Wen CY, Zhang ZL, Pang DW (2014) Control of magnetic field distribution by using nickel powder@PDMS pillars in microchannels. RCS Adv 4:17660Google Scholar
  23. Zhou R, Wang C (2016) Microfluidic separation of magnetic particles with soft magnetic microstructures. Microfluid Nanofluidics 20:48CrossRefGoogle Scholar
  24. Zhou R, Yang B, Bai F, Werner JA, Shi H, Ma Y, Wang C (2016) Fabrication and integration of microscale permanent magnets for particle separation in microfluidics. Microfluid Nanofluidics 20:110CrossRefGoogle Scholar
  25. Zhu T, Lichlyter DJ, Haidekker MA, Mao L (2011) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluidics 10:1233CrossRefGoogle Scholar
  26. Zhu Y, Kekalo K, Dong CN, Huang YY, Schubitidze F, Griwold KE, Baker I, Zhang JXJ (2016) Magnetic-nanoparticle-based immunoassays-on-chip: materials synthesis, surface functionalization, and cancer cell screening. Adv Funct Mater 26(22):3953–3972CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CNRS, Institut des Nanotechnologies de Lyon, INL-UMR 5270Univ Lyon, Université Claude Bernard Lyon 1LyonFrance
  2. 2.CNRS, Institut Lumière Matière, ILM-UMR 5306Univ Lyon, Université Claude Bernard Lyon 1LyonFrance

Personalised recommendations