Advertisement

Rapid prototyping of single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions by using laser ablation and UV-curable polymer

  • Zhibin YanEmail author
  • Xiaoyang Huang
  • Chun Yang
Research Paper

Abstract

The growing demand for microfluidic analytical devices calls for fast, cost-effective and high-throughput fabrication methods. Here we report a low-cost rapid prototyping method for single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions. Channel patterns with different user-designed depths ranging from micrometres to millimetres are engraved on a polymethylmethacrylate (PMMA) plate in one step based on a laser ablation approach. A UV-curable polymer, Norland Optical Adhesive (NOA) 81, is then used to replicate the channel patterns from the PMMA female mould and is finally used as the master for single-layer polydimethylsiloxane (PDMS) microfluidic devices. This rapid prototyping method can significantly facilitate the fast evaluation of proof of concept in microfluidic researches and small-scale mass production for commercialization applications.

Keywords

Microfluidics Microfabrication Rapid prototyping Single-layer PDMS Laser ablation UV-curable polymer 

Notes

Acknowledgements

The work is supported by the Ministry of Education, Singapore, under Academic Research Fund (AcRF) Tier 1 Grant No. RG97/13 and RG80/15.

Supplementary material

10404_2017_1943_MOESM1_ESM.pdf (255 kb)
Supplementary material 1 (PDF 255 kb)

Supplementary material 2 (WMV 9012 kb)

References

  1. Alapan Y, Little JA, Gurkan UA (2014) Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Sci Rep 4:7173. doi: 10.1038/srep07173 CrossRefGoogle Scholar
  2. Alapan Y, Hasan MN, Shen R, Gurkan UA (2015) Three-dimensional printing based hybrid manufacturing of microfluidic devices. J Nanotechnol Eng Med 6(2):021007-021007-021009. doi: 10.1115/1.4031231
  3. Alapan Y, Kim C, Adhikari A, Gray KE, Gurkan-Cavusoglu E, Little JA, Gurkan UA (2016) Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res 173(74–91):e78. doi: 10.1016/j.trsl.2016.03.008 Google Scholar
  4. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41. doi: 10.1021/ac503968p CrossRefGoogle Scholar
  5. Chen X, Shen J, Zhou M (2016) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRefGoogle Scholar
  6. Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14(2):424–430. doi: 10.1039/C3LC50956G CrossRefGoogle Scholar
  7. Cosson S, Aeberli LG, Brandenberg N, Lutolf MP (2015) Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing. Lab Chip 15(1):72–76. doi: 10.1039/C4LC00848K CrossRefGoogle Scholar
  8. de Mello AJ, Habgood M, Lancaster NL, Welton T, Wootton RCR (2004) Precise temperature control in microfluidic devices using Joule heating of ionic liquids. Lab Chip 4(5):417–419. doi: 10.1039/B405760K CrossRefGoogle Scholar
  9. Detlef S, Henning K, Jörg PK (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14(2):182CrossRefGoogle Scholar
  10. Duraiswamy S, Khan SA (2010) Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Lett 10(9):3757–3763. doi: 10.1021/nl102478q CrossRefGoogle Scholar
  11. Eluru G, Julius LAN, Gorthi SS (2016) Single-layer microfluidic device to realize hydrodynamic 3D flow focusing. Lab Chip 16(21):4133–4141. doi: 10.1039/C6LC00935B CrossRefGoogle Scholar
  12. Guan G, Wu L, Bhagat AA, Li Z, Chen PCY, Chao S, Ong CJ, Han J (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci Rep 3:1475. doi: 10.1038/srep01475 CrossRefGoogle Scholar
  13. Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364–2378. doi: 10.1039/C5LC00234F CrossRefGoogle Scholar
  14. Guijt RM, Dodge A, van Dedem GWK, de Rooij NF, Verpoorte E (2003) Chemical and physical processes for integrated temperature control in microfluidic devices. Lab Chip 3(1):1–4. doi: 10.1039/B210629A CrossRefGoogle Scholar
  15. Gurkan UA, Anand T, Tas H, Elkan D, Akay A, Keles HO, Demirci U (2011) Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip 11(23):3979–3989. doi: 10.1039/C1LC20487D CrossRefGoogle Scholar
  16. Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8(7):1097–1103. doi: 10.1039/B719381E CrossRefGoogle Scholar
  17. Isiksacan Z, Guler MT, Aydogdu B, Bilican I, Elbuken C (2016) Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation. J Micromech Microeng 26(3):035008CrossRefGoogle Scholar
  18. Kim J, Chaudhury MK, Owen MJ (2006) Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers. J Colloid Interf Sci 293(2):364–375. doi: 10.1016/j.jcis.2005.06.068 CrossRefGoogle Scholar
  19. Kim SH, Yang Y, Kim M, Nam SW, Lee KM, Lee NY, Kim YS, Park S (2007) Simple route to hydrophilic microfluidic chip fabrication using an ultraviolet (UV)-cured polymer. Adv Funct Mater 17(17):3493–3498. doi: 10.1002/adfm.200601203 CrossRefGoogle Scholar
  20. Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2(4):242–246. doi: 10.1039/B206409J CrossRefGoogle Scholar
  21. Kuo JS, Chiu DT (2011) Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. Lab Chip 11(16):2656–2665. doi: 10.1039/C1LC20125E CrossRefGoogle Scholar
  22. Lai D, Labuz JM, Kim J, Luker GD, Shikanov A, Takayama S (2013) Simple multi-level microchannel fabrication by pseudo-grayscale backside diffused light lithography. RSC Adv 3(42):19467–19473. doi: 10.1039/C3RA43834A CrossRefGoogle Scholar
  23. Lee JM, Zhang M, Yeong WY (2016) Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid Nanofluid 20(1):5. doi: 10.1007/s10404-015-1688-8 CrossRefGoogle Scholar
  24. Liga A, Morton JAS, Kersaudy-Kerhoas M (2016) Safe and cost-effective rapid-prototyping of multilayer PMMA microfluidic devices. Microfluid Nanofluid 20(12):164. doi: 10.1007/s10404-016-1823-1 CrossRefGoogle Scholar
  25. Liu H-B, Gong H-Q (2009) Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J Micromech Microeng 19(3):037002CrossRefGoogle Scholar
  26. Lu Y, Shi Z, Yu L, Li CM (2016) Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm[registered sign]. RSC Adv 6(88):85468–85472. doi: 10.1039/C6RA18988A CrossRefGoogle Scholar
  27. Mao H, Yang T, Cremer PS (2002) A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc 124(16):4432–4435. doi: 10.1021/ja017625x CrossRefGoogle Scholar
  28. Mavraki E, Moschou D, Kokkoris G, Vourdas N, Chatzandroulis S, Tserepi A (2011) A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate. Procedia Eng 25:1245–1248. doi: 10.1016/j.proeng.2011.12.307 CrossRefGoogle Scholar
  29. Min K-I, Kim J-O, Kim H, Im DJ, Kim D-P (2016) Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications. Lab Chip 16(6):977–983. doi: 10.1039/C5LC01585E CrossRefGoogle Scholar
  30. Nath P, Fung D, Kunde YA, Zeytun A, Branch B, Goddard G (2010) Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10(17):2286–2291. doi: 10.1039/C002457K CrossRefGoogle Scholar
  31. Park J, Kim YS, Hammond PT (2005) Chemically nanopatterned surfaces using polyelectrolytes and ultraviolet-cured hard molds. Nano Lett 5(7):1347–1350. doi: 10.1021/nl050592p CrossRefGoogle Scholar
  32. Prakash S, Kumar S (2017) Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt Laser Technol 94:180–192. doi: 10.1016/j.optlastec.2017.03.034 CrossRefGoogle Scholar
  33. Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci 110(22):E1974–E1983. doi: 10.1073/pnas.1216989110 CrossRefGoogle Scholar
  34. Shamloo A, Ma N, M-m Poo, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299. doi: 10.1039/B719788H CrossRefGoogle Scholar
  35. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651. doi: 10.1126/science.1066238 CrossRefGoogle Scholar
  36. Sun Y, Kwok YC, Nguyen N-T (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16(8):1681CrossRefGoogle Scholar
  37. Velve Casquillas G, Fu C, Le Berre M, Cramer J, Meance S, Plecis A, Baigl D, Greffet J-J, Chen Y, Piel M, Tran PT (2011) Fast microfluidic temperature control for high resolution live cell imaging. Lab Chip 11(3):484–489. doi: 10.1039/C0LC00222D CrossRefGoogle Scholar
  38. Vigolo D, Rusconi R, Piazza R, Stone HA (2010) A portable device for temperature control along microchannels. Lab Chip 10(6):795–798. doi: 10.1039/B919146A CrossRefGoogle Scholar
  39. Villermaux E, Stroock AD, Stone HA (2008) Bridging kinematics and concentration content in a chaotic micromixer. Phys Rev E 77(1):015301CrossRefGoogle Scholar
  40. Wang ZK, Zheng HY, Lim RYH, Wang ZF, Lam YC (2011) Improving surface smoothness of laser-fabricated microchannels for microfluidic application. J Micromech Microeng 21(9):095008CrossRefGoogle Scholar
  41. Wu M-H, Huang S-B, Cui Z, Cui Z, Lee G-B (2008) Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sens Actuators B Chem 129(1):231–240. doi: 10.1016/j.snb.2007.07.145 CrossRefGoogle Scholar
  42. Xiong B, Ren K, Shu Y, Chen Y, Shen B, Wu H (2014) Recent developments in microfluidics for cell studies. Adv Mater 26(31):5525–5532. doi: 10.1002/adma.201305348 CrossRefGoogle Scholar
  43. Yan Z, Huang X, Yang C (2015) Deposition of colloidal particles in a microchannel at elevated temperatures. Microfluid Nanofluid 18(3):403–414. doi: 10.1007/s10404-014-1448-1 CrossRefGoogle Scholar
  44. Yasui T, Omoto Y, Osato K, Kaji N, Suzuki N, Naito T, Watanabe M, Okamoto Y, Tokeshi M, Shamoto E, Baba Y (2011) Microfluidic baker’s transformation device for three-dimensional rapid mixing. Lab Chip 11(19):3356–3360. doi: 10.1039/C1LC20342H CrossRefGoogle Scholar
  45. Zhang M, Wu J, Wang L, Xiao K, Wen W (2010) A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10(9):1199–1203. doi: 10.1039/B923101C CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations