Laser-induced fluorescence visualization of ion transport in a pseudo-porous capacitive deionization microstructure


In this paper, a microfluidic experimental set-up is introduced to study the ionic transport in an artificial capacitive deionization (CDI) cell. CDI is a promising desalination technique, which relies on the application of an external electric field and high surface area porous electrodes for ion separation and storage. Photolithography and deep reactive ion etching were used to fabricate a micro-CDI channel with pseudo-porous electrodes on a silicon-on-insulator substrate. Laser-induced fluorescence was performed using cationic Sulforhodamine B (SRB) fluorescent dye to measure ion concentration within the bulk solution and more importantly, within the porous electrodes during the desalination process, with an average normalized root mean square deviation of 8.2 %. Using this set-up, electromigration of ions within the electrode was visualized and the effect of applied electric potential on bulk solution concentration distribution is quantified. In addition, SRB and Fluorescein were used together to visualize anion and cation concentrations simultaneously. The method presented in this study can be used for solution concentrations up to approximately 0.7 mM. The ionic concentration profiles obtained by this approach can be used to test and validate the existing electrosorption models, and pseudo-porous electrodes can be modified to observe the effects of pore size, shape and distribution on electrosorption performance. Furthermore, with proper modifications, the microfabricated structure and experimental set-up can be used for CDI-on-a-chip applications and bio-separation devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. Ahn H-J, Lee J-H, Jeong Y, Lee J-H, Chi C-S, Oh H-J (2007) Nanostructured carbon cloth electrode for desalination from aqueous solutions. Mater Sci Eng A 449–451:841–845. doi:10.1016/j.msea.2006.02.448

  2. Albaugh KB, Cade PE, Rasmussen DH (1988) Mechanisms of anodic bonding of silicon to Pyrex glass. In: Solid-state sensor and actuator workshop, 1988. Technical Digest., IEEE, 6–9 Jun 1988, pp 109–110. doi:10.1109/SOLSEN.1988.26450

  3. Bazant MZ, Thornton K, Ajdari A (2004) Diffuse-charge dynamics in electrochemical systems. Phys Rev E 70(2):021506

  4. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4(3):656–667

  5. Biesheuvel PM, van Limpt B, van der Wal A (2009) Dynamic adsorption/desorption process model for capacitive deionization. J Phys Chem C 113(14):5636–5640. doi:10.1021/jp809644s

  6. Biesheuvel PM, Fu Y, Bazant MZ (2011a) Diffuse charge and Faradaic reactions in porous electrodes. Phys Rev E 83(6):061507

  7. Biesheuvel PM, Zhao R, Porada S, van der Wal A (2011b) Theory of membrane capacitive deionization including the effect of the electrode pore space. J Colloid Interface Sci 360(1):239–248

  8. Blair John W, Murphy George W (1960) Electrochemical demineralization of water with porous electrodes of large surface area. In: SALINE WATER CONVERSION, vol 27. Advances in Chemistry, vol 27. American Chemical Society, pp 206–223. doi:10.1021/ba-1960-0027.ch020

  9. Carroll B, Hidrovo C (2012) Experimental investigation of inertial mixing in colliding droplets. Heat Transf Eng 34(2–3):120–130. doi:10.1080/01457632.2013.703087

  10. Dai K, Shi L, Fang J, Zhang D, Yu B (2005) NaCl adsorption in multi-walled carbon nanotubes. Mater Lett 59(16):1989–1992

  11. Demirer ON, Naylor RM, Rios Perez CA, Wilkes E, Hidrovo C (2013) Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water. Desalination 314:130–138. doi:10.1016/j.desal.2013.01.014

  12. Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS (2001) Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J Electrochem Soc 148(8):A910–A914. doi:10.1149/1.1382589

  13. Fiorini GS, Jeffries GD, Lim DS, Kuyper CL, Chiu DT (2003) Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds. Lab Chip 3(3):158–163

  14. Folch A, Ayon A, Hurtado O, Schmidt MA, Toner M (1999) Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. J Biomech Eng 121(1):28–34

  15. Huang Z-H, Wang M, Wang L, Kang F (2012) Relation between the charge efficiency of activated carbon fiber and its desalination performance. Langmuir 28(11):5079–5084. doi:10.1021/la204690s

  16. Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, Atieh MA, Rahman F, Laoui T, Karnik R, Wang EN (2011) Nanostructured materials for water desalination. Nanotechnology 22(29):292001

  17. Johnson AM, Newman J (1971) Desalting by means of porous carbon electrodes. J Electrochem Soc 118(3):510–517

  18. Kim Y-J, Choi J-H (2010) Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Sep Purif Technol 71(1):70–75

  19. Kim M, Yoda M (2010) Dual-tracer fluorescence thermometry measurements in a heated channel. Exp Fluids 49(1):257–266. doi:10.1007/s00348-010-0853-9

  20. Kim SJ, Wang Y-C, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99(4):044501

  21. Kovacs GTA, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. Proc IEEE 86(8):1536–1551. doi:10.1109/5.704259

  22. Kwak R, Guan G, Peng WK, Han J (2013) Microscale electrodialysis: concentration profiling and vortex visualization. Desalination 308:138–146. doi:10.1016/j.desal.2012.07.017

  23. Laermer F, Urban A (2003) Challenges, developments and applications of silicon deep reactive ion etching. Microelectron Eng 67–68:349–355. doi:10.1016/S0167-9317(03)00089-3

  24. Lee TMH, Lee DHY, Liaw CYN, Lao AIK, Hsing IM (2000) Detailed characterization of anodic bonding process between glass and thin-film coated silicon substrates. Sens Actuators A 86(1–2):103–107. doi:10.1016/S0924-4247(00)00418-0

  25. Milanova D, Chambers RD, Bahga SS, Santiago JG (2011) Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis. Electrophoresis 32(22):3286–3294. doi:10.1002/elps.201100210

  26. Mossad M, Zou L (2013) Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts. J Hazard Mater 244–245:387–393. doi:10.1016/j.jhazmat.2012.11.062

  27. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225:74–80. doi:10.1016/s0022-3093(98)00011-8

  28. Quaglio M, Canavese G, Giuri E, Marasso S, Perrone D, Cocuzza M, Pirri C (2008) Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips. J Micromech Microeng 18(5):055012

  29. Ray K, Nakahara H (2001) Adsorption of sulforhodamine dyes in cationic Langmuir–Blodgett films: spectroscopic and structural studies. J Phys Chem B 106(1):92–100. doi:10.1021/jp011946d

  30. Rios Perez CA, Demirer ON, Clifton RL, Naylor R, Hidrovo C (2013) Macro analysis of the electro adsorption process in low concentration NaCl solutions for water desalination applications. J Electrochem Soc 160(3):E13–E21

  31. Sheridan E, Knust KN, Crooks RM (2011) Bipolar electrode depletion: membraneless filtration of charged species using an electrogenerated electric field gradient. Analyst 136(20):4134–4137

  32. Song A, Zhang J, Zhang M, Shen T, Tang Ja (2000) Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf A 167(3):253–262. doi:10.1016/S0927-7757(99)00313-1

  33. Wang L, Wang M, Huang Z-H, Cui T, Gui X, Kang F, Wang K, Wu D (2011) Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. J Mater Chem 21(45):18295–18299

  34. Werner A, Konarev PV, Svergun DI, Hahn U (2009) Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering. Anal Biochem 389(1):52–62. doi:10.1016/j.ab.2009.03.018

Download references


The authors would like to thank Dr. Myeongsub Kim and Dr. Tae Jin Kim for their help in LIF visualization and microscopy set-up. This research was funded by The University of Texas start-up funds and The University of Texas System STARS.

Author information

Correspondence to Onur N. Demirer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPEG 2422 kb)

Supplementary material 2 (MPG 9940 kb)

Supplementary material 1 (MPEG 2422 kb)

Supplementary material 2 (MPG 9940 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demirer, O.N., Hidrovo, C.H. Laser-induced fluorescence visualization of ion transport in a pseudo-porous capacitive deionization microstructure. Microfluid Nanofluid 16, 109–122 (2014) doi:10.1007/s10404-013-1228-3

Download citation


  • Capacitive deionization
  • Laser-induced fluorescence
  • Visualization
  • Electrosorption