Skip to main content
Log in

High field asymmetric waveform for ultra-enhanced electroosmotic pumping of porous anodic alumina membranes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An electroosmotic EO process is presented for nanoporous membranes capable of generating EO flow rates over thirty times higher than previously possible with the same membrane and solution. In generating high EO flows, a limiting factor is faradaic reactions which appear at high electric fields. A process is presented capable of limiting and even canceling these reactions allowing electric field between one and two orders of magnitude higher. This is achieved by applying an asymmetric bipolar rectangular voltage waveform. The results show the enhanced EO pumping capabilities of membranes under a high electric field asymmetric waveform which prevents gas generation at high voltages. A baseline is established by measuring the EO pump performance when a constant voltage is applied to SiO2-coated nanoporous anodic aluminum oxide membranes. The analysis compares the effect of the applied voltage type on the maximum flow rate, power consumption, and maximum pressure. Results show that large gas generation prevents membrane operation when direct current DC voltages above 50 V are applied. On the other hand, it operates normally under an asymmetric voltage +1,800/−900 V applied, with negligible gas generation. This results in a thirty-time flow rate increase. Larger flow rates/voltages are possible but were not considered due to hardware limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ai Y, Yalcin SE, Gu D, Baysal O, Baumgart H, Qian S, Beskok A (2010) A low-voltage nano-porous electroosmotic pump. J Colloid Interface Sci 350(2):465–470

    Article  Google Scholar 

  • Arulanandam S, Li D (2000) Determining ζ potential and surface conductance by monitoring the current in electro-osmotic flow. J Colloid Interface Sci 225(2):421–428

    Article  Google Scholar 

  • Berrouche Y, Avenas Y, Schaeffer C, Hsueh-Chia Chang, Ping Wang (2009) Design of a porous electroosmotic pump used in power electronic cooling. IEEE Trans Ind Appl 45(6):2073–2079

    Article  Google Scholar 

  • Brask A, Snakenborg D, Kutter JP, Bruus H (2006) AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves. Lab Chip 6(2):280

    Article  Google Scholar 

  • Buie CR, Posner JD, Fabian T, Cha S-W, Kim D, Prinz FB, Eaton JK, Santiago JG (2006) Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping. J Power Sources 161(1):191–202

    Article  Google Scholar 

  • Burke JM, Smith CD, Ivory CF (2010) Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules. Electrophoresis 31(5):902–909

    Article  Google Scholar 

  • Cao Z, Yuan L, Liu Y-F, Yao S, Yobas L (2012) Microchannel plate electro-osmotic pump. Microfluid Nanofluid 13(2):279–288

    Article  Google Scholar 

  • Chen L (2005) Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sensors Actuators B Chem 104(1):117–123

    Article  Google Scholar 

  • Chen L, Ma J, Guan Y (2004) Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. J Chromatogr A 1028(2):219–226

    Article  Google Scholar 

  • Chen W, Yuan JH, Xia XH (2005) Characterization and manipulation of the electroosmotic flow in porous anodic alumina membranes. Anal Chem 77(24):8102–8108

    Article  Google Scholar 

  • Chen Y-F, Li M-C, Hu Y-H, Chang W-J, Wang C-C (2007) Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid Nanofluid 5(2):235–244

    Article  Google Scholar 

  • Chen J-K, Weng C-N, Yang R-J (2009) Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel. Lab Chip 9(9):1267

    Article  Google Scholar 

  • Chen Y-F, Hu Y-H, Chou Y-I, Lai S-M, Wang C-C (2010) Surface modification of nano-porous anodic alumina membranes and its use in electroosmotic flow. Sensors Actuators B Chem 145(1):575–582

    Article  Google Scholar 

  • Donose BC, Harnisch F, Taran E (2012) Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy. Electrochem Commun 24:21–24

    Article  Google Scholar 

  • Garg R, Kumar V, Kumar D, Chakarvarti SK (2012) Electrical transport through micro porous track etch membranes of same porosity. Mod Phys Lett B 26(31):1250209

    Article  Google Scholar 

  • Heuck F, Van der Ploeg P, Staufer U (2011) Deposition and structuring of Ag/AgCl electrodes inside a closed polymeric microfluidic system for electroosmotic pumping. Microelectron Eng 88(8):1887–1890

    Article  Google Scholar 

  • Kim Y, Cha M, Choi Y, Joo H, Lee J (2013) Electrokinetic separation of biomolecules through multiple nano-pores on membrane. Chem Phys Lett 561–562:63–67

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2):187–202

    Article  Google Scholar 

  • Kohlheyer D, Eijkel JCT, Schlautmann S, Van den Berg A, Schasfoort RBM (2008) Bubble-Free Operation of a Microfluidic Free-Flow Electrophoresis Chip with Integrated Pt Electrodes. Anal Chem 80(11):4111–4118

    Article  Google Scholar 

  • Kwon K, Park C-W, Kim D (2012) High-flowrate, compact electroosmotic pumps with porous polymer track-etch membranes. Sens Actuators, A 175:108–115

    Article  Google Scholar 

  • Levine S, Marriott JR, Robinson K (1975) Theory of electrokinetic flow in a narrow parallel-plate channel. J Chem Soc, Faraday Trans 2(71):1–11

    Article  Google Scholar 

  • Li PCH, Harrison DJ (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 69(8):1564–1568

    Article  Google Scholar 

  • Lin C-W, Yao S, Posner JD, Myers AM, Santiago JG (2007) Toward orientation-independent design for gas recombination in closed-loop electroosmotic pumps. Sensors Actuators B Chem 128(1):334–339

    Article  Google Scholar 

  • McBride SE (1999) Balanced asymmetric electronic pulse patterns for operating electrode-based pumps. US Patent 5,964,977, filed 21 Mar 1997 and issued 12 Oct 1999

  • Miao J-Y, Xu Z-L, Zhang X-Y, Wang N, Yang Z-Y, Sheng P (2007) Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes. Adv Mater 19(23):4234–4237

    Article  Google Scholar 

  • Pikal MJ (1992) The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 9(2):201–237

    Article  Google Scholar 

  • Prakash P, Grissom MD, Rahn CD, Zydney AL (2006) Development of an electroosmotic pump for high performance actuation. J Membr Sci 286(1–2):153–160

    Article  Google Scholar 

  • Reichmuth DS, Chirica GS, Kirby BJ (2003) Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives. Sensors Actuators B Chem 92(1–2):37–43

    Article  Google Scholar 

  • Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69(11):4017–4024

    Article  Google Scholar 

  • Selvaganapathy P, Yit-shun Leung Ki, Renaud P, Mastrangelo CH (2002) Bubble-free electrokinetic pumping. J Microelectromech Syst 11(5):448–453

    Article  Google Scholar 

  • Stuetzer OM (1959) Ion drag pressure generation. J Appl Phys 30(7):984–994

    Article  Google Scholar 

  • Vajandar SK, Xu D, Markov DA, Wikswo JP, Hofmeister W, Li D (2007) SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 18(27):275705

    Article  Google Scholar 

  • Vogt H (2011) On the gas-evolution efficiency of electrodes I-Theoretical. Electrochim Acta 56(3):1409–1416

    Article  Google Scholar 

  • Wang P, Chen Z, Chang H-C (2006) A new electro-osmotic pump based on silica monoliths. Sensors Actuators B Chem 113(1):500–509

    Article  MathSciNet  Google Scholar 

  • Wang C, Wang L, Zhu X, Wang Y, Xue J (2012) Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. Lab Chip 12(9):1710

    Article  Google Scholar 

  • Xu Z, Miao J, Wang N, Wen W, Sheng P (2011) Digital flow control of electroosmotic pump: Onsager coefficients and interfacial parameters determination. Solid State Commun 151(6):440–445

    Article  Google Scholar 

  • Yao S, Santiago JG (2003) Porous glass electroosmotic pumps: theory. J Colloid Interface Sci 268(1):133–142

    Article  Google Scholar 

  • Yao S, Hertzog DE, Zeng S, Mikkelsen JC, Santiago JG (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interface Sci 268(1):143–153

    Article  Google Scholar 

  • Yao S, Myers AM, Posner JD, Rose KA, Santiago JG (2006) Electroosmotic pumps fabricated from porous silicon membranes. J Microelectromech Syst 15(3):717–728

    Article  Google Scholar 

  • Zeng S, Chen CH, Mikkelsen JC, Santiago JG et al (2001) Fabrication and characterization of electroosmotic micropumps. Sensors Actuators B Chem 79(2–3):107–114

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided for this study by the Office of Naval Research (ONR), Grant No. N00014-11-1-0019, with Dr. Thomas F. Swean of the Ocean Engineering and Marine Systems Program serving as Program Manager. The authors are thankful to Mr. Thomas E. Hansen for all the support obtaining the EO pump video and images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Diez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 9654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piwowar, D., Tawfik, M.E. & Diez, F.J. High field asymmetric waveform for ultra-enhanced electroosmotic pumping of porous anodic alumina membranes. Microfluid Nanofluid 15, 859–870 (2013). https://doi.org/10.1007/s10404-013-1196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1196-7

Keywords

Navigation