Microfluidics and Nanofluidics

, Volume 14, Issue 1–2, pp 163–169 | Cite as

The role of viscoelasticity in drop impact and spreading for inkjet printing of polymer solution on a wettable surface

  • Sungjune JungEmail author
  • Stephen D. Hoath
  • Ian M. Hutchings
Research Paper


We investigate here for the first time the entire deposition process of a sub-30 μm-sized polymer-containing drop on wettable surfaces over more than 7 decades of elapsed time, under conditions fully representative of inkjet printing. The drop deposition dynamics of a polystyrene solution on a highly or partially wettable surface are independent of the high-shear rheology of the fluid, while the final drop size is significantly affected by surface wettability. We show why the polymer chains do not become extended despite the high extension rate in drop spreading. This study provides a framework to evaluate the effects of viscoelasticity on the drop deposition process due to the presence of polymers in dilute solution.


Drop impact Wetting Viscoelasticity Inkjet printing Polymer 



SJ thanks the Korea Institute for Advancement of Technology and Cambridge Display Technology Ltd. for financial support.

Supplementary material

Supplementary material 1 (AVI 15423 kb)


  1. A-Alamry K, Nixon K, Hindley R et al (2011) Flow-induced polymer degradation during ink-jet printing. Macromol Rapid Commun 32:316–320CrossRefGoogle Scholar
  2. Bergeron V, Bonn D, Martin J, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405:772–775CrossRefGoogle Scholar
  3. Caironi M, Gili E, Sakanoue T et al (2010) High yield, single droplet electrode arrays for nanoscale printed electronics. ACS Nano 4:1451–1456CrossRefGoogle Scholar
  4. Clasen C, Plog JP, Kulicke W-M et al (2006) How dilute are dilute solutions in extensional flows? J Rheol 50:849–881CrossRefGoogle Scholar
  5. De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827CrossRefGoogle Scholar
  6. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRefGoogle Scholar
  7. Dijksman JF, Duineveld PC, Hack MJJ et al (2007) Precision ink jet printing of polymer light emitting displays. J Mater Chem 17:511–522CrossRefGoogle Scholar
  8. Hoath SD, Hutchings IM, Martin GD et al (2009) Links between ink rheology, drop-on-demand jet formation, and printability. J Imaging Sci Technol 53:041208–041208-8CrossRefGoogle Scholar
  9. Hoath SD, Harlen OG, Hutchings IM (2012) Jetting behaviour of polymer solutions in drop-on-demand inkjet printing. J Rheol 56:1109–1127CrossRefGoogle Scholar
  10. James DT, Kjellander BKC, Smaal WTT et al (2011) Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer. ACS Nano 5:9824–9835CrossRefGoogle Scholar
  11. Jung S, Hutchings IM (2012) The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale. Soft Matter 8:2686–2696CrossRefGoogle Scholar
  12. Jung S, Hoath SD, Martin GD, Hutchings IM (2010) Experimental study of atomization patterns produced by the oblique collision of two viscoelastic liquid jets. J Non-Newtonian Mech 166:297–306CrossRefGoogle Scholar
  13. Jung S, Hoath SD, Martin GD, Hutchings IM (2011) A new method to assess the jetting behavior of drop-on-demand ink jet fluids. J Imaging Sci Technol 55:010501–010501-6CrossRefGoogle Scholar
  14. McKinley GH (2005) Dimensionless groups for understanding free surface flows of complex fluids. Soc Rheol Rheol Bull 74:6–9Google Scholar
  15. Minemawari H, Yamada T, Matsui H et al (2011) Inkjet printing of single-crystal films. Nature 475:364–367CrossRefGoogle Scholar
  16. Morrison NF, Harlen OG (2010) Viscoelasticity in inkjet printing. Rheol Acta 49:619–632CrossRefGoogle Scholar
  17. Perelaer J, Smith PJ, van den Bosch E et al (2009) The Spreading of Inkjet-Printed Droplets with Varying Polymer Molar Mass on a Dry Solid Substrate. Macromol Chem Phys 210:495–502CrossRefGoogle Scholar
  18. Ren M, Gorter H, Michels J, Andriessen R (2011) Inkjet technology for large area organic light-emitting diode and organic photovoltaic applications. J Imaging Sci Technol 55:040301–040301-6CrossRefGoogle Scholar
  19. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22:673–685CrossRefGoogle Scholar
  20. Sirringhaus H (2009) Materials and applications for solution-processed organic field-effect transistors. Proc IEEE 97:1570–1579CrossRefGoogle Scholar
  21. Smith MI, Bertola V (2010) Effect of polymer additives on the wetting of impacting droplets. Phys Rev Lett 104:154502–15402-4CrossRefGoogle Scholar
  22. Son Y, Kim C (2009) Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers. J Nonnewton Fluid Mech 162:78–87CrossRefGoogle Scholar
  23. Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23:1935–1961CrossRefGoogle Scholar
  24. Vadillo DC, Tuladhar TR, Mulji AC et al (2010a) Evaluation of the inkjet fluid’s performance using the “Cambridge Trimaster” filament stretch and break-up device. J Rheol 54:261–282CrossRefGoogle Scholar
  25. Vadillo DC, Tuladhar TR, Mulji AC, Mackley MR (2010b) The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. J Rheol 54:781–795CrossRefGoogle Scholar
  26. Xia Y, Friend RH (2005) Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules 38:6466–6471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sungjune Jung
    • 1
    • 2
    Email author
  • Stephen D. Hoath
    • 1
  • Ian M. Hutchings
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations