Advertisement

Microfluidics and Nanofluidics

, Volume 12, Issue 1–4, pp 33–39 | Cite as

Synthesis of shape-controlled particles based on synergistic effect of geometry confinement, double emulsion template, and polymerization quenching

  • Qingquan Zhang
  • Bingcheng Lin
  • Jianhua QinEmail author
Research Paper

Abstract

We present a novel method to produce shape-controlled particles based on synergistic effect of geometry confinement, double emulsion template, and polymerization quenching. Based on the established method, a series of crescent and multi-pod particles can be produced easily and regulated flexibly.

Keywords

Microfluidic Double emulsion Particles synthesis 

Notes

Acknowledgments

This research was supported by NSFC of China (Nos. 20635030 and 90713014), 973 program, (Nos. 2007CB714505 and 2007CB714507), Knowledge Innovation Program of CAS (KJCX2-YW-H18) and Instrument Research and Development Program of the Chinese Academy of Sciences (YZ200908).

Supplementary material

10404_2011_846_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (MPG 1300 kb)

Supplementary material 3 (MPG 240 kb)

Supplementary material 4 (MPG 1092 kb)

References

  1. Badaire S, Cottin-Bizonne C, Woody JW, Yang A, Stroock AD (2007) Shape selectivity in the assembly of lithographically designed colloidal. J Am Chem Soc 129:40–41CrossRefGoogle Scholar
  2. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction. Nano Lett 7(5):1113–1118CrossRefGoogle Scholar
  3. Champion JA, Katare YK, Mitragotri S (2007a) From the cover: making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci 104(29):11901–11904CrossRefGoogle Scholar
  4. Champion J, Katare Y, Mitragotri S (2007b) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Controlled Release 121(1–2):3–9CrossRefGoogle Scholar
  5. Chen C-H, Abate AR, Lee D, Terentjev EM, Weitz DA (2009a) Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater 21(31):3201–3204CrossRefGoogle Scholar
  6. Chen C-H, Shah RK, Abate AR, Weitz DA (2009b) Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25(8):4320–4323CrossRefGoogle Scholar
  7. Choi C-H, Lee J, Yoon K, Tripathi A, Stone HA, Weitz DA, Lee C-S (2010) Surface-tension-induced synthesis of complex particles using confined polymeric fluids. Angew Chem Int Ed 49(42):7748–7752CrossRefGoogle Scholar
  8. Decker C, Jenkins AD (1985) Kinetic approach of O2 inhibition in ultraviolet- and laser-induced polymerizations. Macromolecules 18:1241–1244CrossRefGoogle Scholar
  9. Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21(41):4071–4086CrossRefGoogle Scholar
  10. Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles. Langmuir 21:2113–2116CrossRefGoogle Scholar
  11. Dendukuri D, Panda P, Haghgooie R, Kim JM, Hatton TA, Doyle PS (2008) Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules 41:8547–8556CrossRefGoogle Scholar
  12. Donev A (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303(5660):990–993CrossRefGoogle Scholar
  13. Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton NL (2004) Surface-directed, graft polymerization within. Anal Chem 76:1865–1870CrossRefGoogle Scholar
  14. Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647CrossRefGoogle Scholar
  15. Hwang DK, Oakey J, Toner M, Arthur JA, Anseth KS, Lee S, Zeiger A, Vliet KJV, Doyle PS (2009) Stop-flow lithography for the production of shape-evolving degradable microgel particles. J Am Chem Soc 131:4499–4504CrossRefGoogle Scholar
  16. Jiang P (2001) A lost-wax approach to monodisperse colloids and their crystals. Science 291(5503):453–457CrossRefGoogle Scholar
  17. Kegel WK (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287(5451):290–293CrossRefGoogle Scholar
  18. Kim JW, Larsen RJ, Weitz DA (2007) Uniform nonspherical colloidal particles with tunable shapes. Adv Mater 19(15):2005–2009CrossRefGoogle Scholar
  19. Lee D, Weitz DA (2009) Nonspherical colloidosomes with multiple compartments from double emulsions. Small 5(17):1932–1935CrossRefGoogle Scholar
  20. Lowe KC, Davey MR, Power JB (1998) Perfluorochemicals—their applications and benefits to cell culture. Trends Biotechnol 16:272–277CrossRefGoogle Scholar
  21. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures. Nano Lett 5(1):119–124CrossRefGoogle Scholar
  22. Marcikic I, de Riedmatten H, Tittel W, Zbinden H, Gisin N (2003) Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421(6922):509–513CrossRefGoogle Scholar
  23. Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies. J Am Chem Soc 127:8058–8063CrossRefGoogle Scholar
  24. Nisisako T, Torii T (2007) Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater 19(11):1489–1493CrossRefGoogle Scholar
  25. Okubo M, Fujibayashi T, Terada A (2005) Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid Polym Sci 283(7):793–798CrossRefGoogle Scholar
  26. Pannacci N, Bruus H, Bartolo D, Etchart I, Lockhart T, Hennequin Y, Willaime H, Tabeling P (2008) Equilibrium and nonequilibrium states in microfluidic double emulsions. Phys Rev Lett 101(16):164502-1–164502-4CrossRefGoogle Scholar
  27. Rajabian M, Dubois C, Grmela M (2005) Suspensions of semiflexible fibers in polymeric fluids: rheology and thermodynamics. Rheol Acta 44(5):521–535CrossRefGoogle Scholar
  28. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse. J Am Chem Soc 127:10096–10100CrossRefGoogle Scholar
  29. Sozzani P, Bracco S, Comotti A, Simonutti R, Valsesia P, Sakamoto Y, Terasaki O (2006) Complete shape retention in the transformation of silica to polymer micro-objects. Nat Mater 5(7):545–551CrossRefGoogle Scholar
  30. van Blaaderen A (2006) Colloids get complex. Nature 439(2):545–546CrossRefGoogle Scholar
  31. Wang B, Shum HC, Weitz DA (2009) Fabrication of monodisperse toroidal particles by polymer solidification in microfluidics. ChemPhysChem 10(4):641–645CrossRefGoogle Scholar
  32. Weitz DA (2004) PHYSICS: packing in the spheres. Science 303(5660):968–969CrossRefGoogle Scholar
  33. Wurm F, Kilbinger AFM (2009) Polymeric Janus particles. Angew Chem Int Ed 48(45):8412–8421CrossRefGoogle Scholar
  34. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44(5):724–728CrossRefGoogle Scholar
  35. Yang S-M, Kim S-H, Lim J-M, Yi G-R (2008) Synthesis and assembly of structured colloidal particles. J Mater Chem 18(19):2177–2190CrossRefGoogle Scholar
  36. Yin Y, Xia Y (2001) Self-assembly of monodispersed spherical. Adv Mater 13(4):267–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  2. 2.Graduate School of the Chinese Academy of ScienceDalianChina

Personalised recommendations