Advertisement

Chaotic mixing using source–sink microfluidic flows in a PDMS chip

Abstract

We present an active fixed-volume mixer based on the creation of multiple source–sink microfluidic flows in a polydimethylsiloxane (PDMS) chip without the need of external or internal pumps. To do so, four different pressure-controlled actuation chambers are arranged on top of the 5 μl volume of the mixing chamber. After the mixing volume is sealed/fixed by microfluidic valves made using ‘microplumbing technology’, a virtual source–sink pair is created by pressurizing one of the membranes and, at the same time, releasing the pressure of a neighboring one. The pressurized air deforms the thin membrane between the mixing and control chambers and creates microfluidic flows from the squeezed region (source) to the released region (sink) where the PDMS membrane is turned into the initial state. Several schemes of operation of virtual source–sink pairs are studied. In the optimized protocol, mixing is realized in just a sub-second time interval, thanks to the implementation of chaotic advection.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Agarwal AK, Sridharamurthy SS, Beebe DJ, Jiang HR (2005) Programmable autonomous micromixers and micropumps. J Microelectromech Syst 14(6):1409–1421. doi:10.1109/Jmems.2005.859101

  2. Aref H (1984) Stirring by chaotic advection. J Fluid Mech 143(June):1–21

  3. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

  4. Beuf A, Gence JN, Carriere P, Raynal F (2010) Chaotic mixing efficiency in different geometries of hele-shaw cells. Int J Heat Mass Transf 53(4):684–693. doi:10.1016/j.ijheatmasstransfer.2009.10.024

  5. Chang ST, Beaumont E, Petsev DN, Velev OD (2008) Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Lab Chip 8(1):117–124. doi:10.1039/B712108c

  6. Chen JK, Ko FH, Chan CH, Huang CF, Chang FC (2006) Using imprinting technology to fabricate three-dimensional devices from moulds of thermosetting polymer patterns. Semicond Sci Technol 21(9):1213–1220. doi:10.1088/0268-1242/21/9/001

  7. Chou H-P, Unger MA, Quake SR (2001) A microfabricated rotary pump. Biomed Microdevices 3(4):323–330

  8. Cieslicki K, Piechna A (2009) Investigations of mixing process in microfluidic manifold designed according to biomimetic rule. Lab Chip 9(5):726–732. doi:10.1039/B811005k

  9. Claux B, Vittori O (2007) Bismuth film electrode as an alternative for mercury electrodes: determination of azo dyes and application for detection in food stuffs. Electroanalysis 19(21):2243–2246. doi:10.1002/elan.200703978

  10. Cola BA, Schaffer DK, Fisher TS, Stremler MA (2006) A pulsed source–sink fluid mixing device. J Microelectromech Syst 15(1):259–266. doi:10.1109/Jmems.2005.863786

  11. deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402. doi:10.1038/Nature05062

  12. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

  13. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal pdms-pdms bonding technique for microfluidic devices. J Micromech Microeng 18(6). doi:10.1088/0960-1317/18/6/067001

  14. Evans J, Liepmann D, Pisano AP (1997) Planar laminar mixer. Proc IEEE MEMS Workshop, pp 96–101

  15. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563. doi:10.1021/Cr9001929

  16. Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565. doi:10.1039/B418253g

  17. Hardy BS, Uechi K, Zhen J, Kavehpour HP (2009) The deformation of flexible pdms microchannels under a pressure driven flow. Lab Chip 9(7):935–938. doi:10.1039/B813061b

  18. Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP (2008) Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip 8(4):565–572. doi:10.1039/B717416k

  19. Herrmann M, Roy E, Veres T, Tabrizian M (2007) Microfluidic elisa on non-passivated pdms chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7(11):1546–1552. doi:10.1039/B707883h

  20. Hertzsch JM, Sturman R, Wiggins S (2007) DNA microarrays: design principles for maximizing ergodic, chaotic mixing. Small 3(2):202–218. doi:10.1002/smll.200600361

  21. Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22(4):435–439. doi:10.1038/Nbt951

  22. Jang LS, Chao SH, Holl MR, Meldrum DR (2007) Resonant mode-hopping micromixing. Sens Actuators A 138(1):179–186. doi:10.1016/j.sna.2007.04.052

  23. Jones SW (1991) The enhancement of mixing by chaotic advection. Phys Fluids A 3(5):1081–1086

  24. Jones SW, Aref H (1988) Chaotic advection in pulsed-source sink systems. Phys Fluids 31(3):469–485

  25. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the t-sensor. Anal Chem 71(23):5340–5347

  26. Kartalov EP, Walker C, Taylor CR, Anderson WF, Scherer A (2006) Microfluidic vias enable nested bioarrays and autoregulatory devices in newtonian fluids. Proc Natl Acad Sci USA 103(33):12280–12284. doi:10.1073/pnas.0602890103

  27. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866

  28. Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) Su-8: a low-cost negative resist for mems. J Micromech Microeng 7(3):121–124

  29. Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469. doi:10.1109/Jmems.2002.802899

  30. Mao XL, Juluri BK, Lapsley MI, Stratton ZS, Huang TJ (2010) Milliseconds microfluidic chaotic bubble mixer. Microfluid Nanofluidics 8(1):139–144. doi:10.1007/s10404-009-0496-4

  31. McQuain MK, Seale K, Peek J, Fisher TS, Levy S, Stremler MA, Haselton FR (2004) Chaotic mixer improves microarray hybridization. Anal Biochem 325(2):215–226. doi:10.1016/J.Ab.2003.10.032

  32. Metref L, Herrera F, Berdat D, Gijs MAM (2007) Contactless electrochemical actuator for microfluidic dosing. J Microelectromech Syst 16(4):885–892. doi:10.1109/Jmems.2007.892893

  33. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.1038/Nature06385

  34. Nguyen NT, Wu ZG (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16. doi:10.1088/0960-1317/15/2/R01

  35. Orhan JB, Parashar VK, Flueckiger J, Gijs MAM (2008) Internal modification of poly(dimethylsiloxane) microchannels with a borosilicate glass coating. Langmuir 24(16):9154–9161. doi:10.1021/La801317x

  36. Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Philos Trans R Soc Lond A 362(1818):923–935. doi:10.1098/rsta.2003.1355

  37. Raynal F, Plaza F, Beuf A, Carriere P, Souteyrand E, Martin JR, Cloarec JP, Cabrera M (2004) Study of a chaotic mixing system for DNA chip hybridization chambers. Phys Fluids 16(9):L63–L66. doi:10.1063/1.1775807

  38. Rida A, Gijs MAM (2004) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem 76(21):6239–6246. doi:10.1021/Ac049415j

  39. Rife JC, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A 86(1–2):135–140

  40. Sivagnanam V, Song B, Vandevyver C, Gijs MAM (2009) On-chip immunoassay using electrostatic assembly of streptavidin-coated bead micropatterns. Anal Chem 81(15):6509–6515. doi:10.1021/Ac9009319

  41. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

  42. Stremler MA, Haselton FR, Aref H (2004) Designing for chaos: applications of chaotic advection at the microscale. Philos Trans R Soc Lond A 362(1818):1019–1036. doi:10.1098/rsta.2003.1360

  43. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

  44. Studer V, Hang G, Pandolfi A, Ortiz M, Anderson WF, Quake SR (2004) Scaling properties of a low-actuation pressure microfluidic valve. J Appl Phys 95(1):393–398. doi:10.1063/1.1629781

  45. Sturman R, Wiggins S (2009) Eulerian indicators for predicting and optimizing mixing quality. New J Phys 11. doi:10.1088/1367-2630/11/7/075031

  46. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

  47. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104. doi:10.1039/B510127a

  48. Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab Chip 5(7):748–755. doi:10.1039/B502031j

  49. Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A 93(3):266–272

  50. Yuen PK, Li GS, Bao YJ, Muller UR (2003) Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip 3(1):46–50. doi:10.1039/B210274a

Download references

Acknowledgments

We would like to thank Meng Shen of the Laboratory of Microsystems of EPFL (Switzerland) and Dr. Bo Song of the Laboratory of Lanthanide Supramolecular Chemistry of EPFL for helpful discussions and suggestions, Di Jiang of the Laboratory of Microsystems of EPFL (Switzerland) for solving programming issues on the FPGA board and the staff of the EPFL Center of MicroNano Technology (CMI) for assistance in the chip fabrication issues.

Author information

Correspondence to H. Cumhur Tekin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MPG 7414 kb)

Supplementary material 1 (DOC 1641 kb)

Supplementary material 2 (MPG 7414 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tekin, H.C., Sivagnanam, V., Ciftlik, A.T. et al. Chaotic mixing using source–sink microfluidic flows in a PDMS chip. Microfluid Nanofluid 10, 749–759 (2011). https://doi.org/10.1007/s10404-010-0706-0

Download citation

Keywords

  • Fixed-volume mixer
  • Valve
  • Chaotic advection
  • Source–sink flow
  • PDMS
  • Microfluidics