pp 1–12 | Cite as

Human Activities Attract Harmful Mosquitoes in a Tropical Urban Landscape

  • J. M. Lee
  • R. J. Wasserman
  • J. Y. Gan
  • R. F. Wilson
  • S. Rahman
  • S. H. YekEmail author
Original Contribution


Knowledge of the interrelationship of mosquito communities and land use changes is of paramount importance to understand the potential risk of mosquito disease transmission. This study examined the effects of land use types in urban, peri-urban and natural landscapes on mosquito community structure to test whether the urban landscape is implicated in increased prevalence of potentially harmful mosquitoes. Three land use types (park, farm, and forest nested in urban, peri-urban and natural landscapes, respectively) in Klang Valley, Malaysia, were surveyed for mosquito larval habitat, mosquito abundance and diversity. We found that the nature of human activities in land use types can increase artificial larval habitats, supporting container-breeding vector specialists such as Aedes albopictus, a dengue vector. In addition, we observed a pattern of lower mosquito richness but higher mosquito abundance, characterised by the high prevalence of Ae. albopictus in the urban landscape. This was also reflected in the mosquito community structure whereby urban and peri-urban landscapes were composed of mainly vector species compared to a more diverse mosquito composition in natural landscape. This study suggested that good environmental management practices in the tropical urban landscape are of key importance for effective mosquito-borne disease management.


Aedes albopictus Anthropogenic activity Community structure Environmental management Land use Mosquito larval habitat 



This work was part of the research for Ph.D. by LJM at Monash University Malaysia (MUM) funded by Tropical Medicine and Biology Platform to RS, School of Science PhD fellowship to LJM and School of Science Seed Grant to YSH.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10393_2019_1457_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)


  1. Abdullah SA, Hezri AA (2008) From forest landscape to agricultural landscape in the developing tropical country of Malaysia: pattern, process, and their significance on policy. Environmental Management 42:907-917PubMedCrossRefGoogle Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects model using lme4. Journal of Statistical Software 67:1-48CrossRefGoogle Scholar
  3. Berakhi RO, Oyana TJ, Adu-Prah S (2015) Land use and land cover change and its implications in Kagera river basin, East Africa. African Geographical Review 34:209-231CrossRefGoogle Scholar
  4. Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspective. Trends in Parasitology 29:460-468PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bulleri F, Benedetti-Cecchi L, Jaklin A, Lvesa L (2016) Linking disturbance and resistance to invasion via changes in biodiversity: a conceptual model and an experimental test on rocky reefs. Ecology and Evolution 6:2010-2021PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chen DC, Lee HL, Lau KW, Abdullah AG, Tan SB, Sa’diyah I, Norma-Rashid Y, Oh PF, Chan CK, Sofian-Azirun M (2014a) Biting behaviour of Malaysian mosquitoes, Aedes albopictus Skuse, Armigeres kesseli Ramalingam, Culex quinquefasciatus Say, and Culex vishnui Theobald obtained from urban residential areas in Kuala Lumpur. Asian Biomedicine 8:315-321CrossRefGoogle Scholar
  7. Chen X, Wang W, Liang H, Liu X, Da L (2014b) Dynamics of ruderal species diversity under the rapid urbanisation over the past half century in Harbin, Northeast China. Urban Ecosystems 17:455-472CrossRefGoogle Scholar
  8. Cheong YL, Leitao PJ, Lakes T (2014) Assessment of land use factors associated with dengue cases in Malaysia using boosted regression trees. Spatial and Spatio-temporal Epidemiology 10:75-84PubMedCrossRefGoogle Scholar
  9. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  10. Despommier D, Ellis BR, Wilcox BA (2006) The role of ecotones in emerging infectious diseases. EcoHealth 3:281-289CrossRefGoogle Scholar
  11. Fedele G, Locatelli B, Djoudi H, Colloff MJ (2018) Reducing risk by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS ONE 13:e0195895PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fick S, Hijmans R (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302–4315CrossRefGoogle Scholar
  13. Friggens MM, Beler P (2010) Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164:809–820PubMedCrossRefGoogle Scholar
  14. Gaertner M, Wilson JRU, Cadotte MW, Macivor S, Zenni RD, Richardson DM (2017) Non-native species in urban environments: patterns, processes, impacts and challenges. Biological Invasions 19:3461-3469CrossRefGoogle Scholar
  15. Galvani A, Bauch CT, Anand M, Singer BH, Levin SA (2016) Human-environment interactions in population and ecosystem health. Proceedings of the National Academy of Sciences of the United States of America 113:14502-14506PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America 107:16732-16737PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gottdenker N, Streicker D, Faust CL, Carroll R (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:619-632PubMedCrossRefGoogle Scholar
  18. Griswold MW, Lounibos LP (2005) Competitive outcomes of aquatic container Diptera depend on predation and resource levels. Annals of the Entomological Society of America 98:673-681PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gubler DJ (2011) Dengue, urbanization and globalization. Tropical Medicine and Health 39(4 Suppl):3-11PubMedPubMedCentralCrossRefGoogle Scholar
  20. Guo F, Bonebrake TC, Gibson L (2018) Land-use change alters host and vector communities and may elevate disease risk. EcoHealth. [Online 24 April, 2018]
  21. Hassan H, Shohaimi S, Hashim NR (2012) Risk mapping of dengue in Selangor and Kuala Lumpur, Malaysia. Geospatial Health 7:21-25PubMedCrossRefGoogle Scholar
  22. Hassell JM, Begon M, Ward MJ, Fevre EM (2017) Urbanisation and disease emergence: dynamics at the wildlife-livestock-human interface. Trends in Ecology & Evolution 32:55-67CrossRefGoogle Scholar
  23. Hidalgo K, Siaussat D, Braman V, Dabire KR, Simard F, Mouline K, Renault D (2016) Comparative physiological plasticity to desiccation in distinct populations of the malarial mosquito Anopheles coluzzii. Parasites & Vectors 9:565CrossRefGoogle Scholar
  24. Holway DA, Suarez A (2006) Homogenization of ant communities in mediterranean California: the effects of urbanisation and invasion. Biological Conservation 127:319-326CrossRefGoogle Scholar
  25. Jeffery J, Rohela M, Muslimin M, Abdul Aziz SMN, Jamaiah I, Kumar S, Tan TC, Lim YAL, Nissapatorn V, Abdul-Aziz NM (2012) Illustration keys: some mosquitoes of Peninsula Malaysia, Kuala Lumpur: University of Malaya PressGoogle Scholar
  26. Joanne S, Vythilingam I, Teoh BT, Leong CS, Tan KK, Wong ML, Yugavathy N, AbuBakar S (2017) Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes. Tropical Medicine & International Health 22:1154-1165CrossRefGoogle Scholar
  27. Kesavaraju B, Damal K, Juliano SA (2008) Do natural container habitats impede invader dominance? Predator-mediated coexistence of invasive and native container-dwelling mosquitoes. Oecologia 155:631-639PubMedCrossRefGoogle Scholar
  28. Kilpatrick, AM (2011) Globalization, land use, and the invasion of West Nile virus. Science 334:213-220CrossRefGoogle Scholar
  29. Kunz Y, Steinbach S, Dittrich C, Hauser-Schaublin B, Rosyani I, Soetarto E, Faust H. (2017) ‘The fridge in the forest’: historical trajectories of land tenure regulations fostering landscape transformation in Jambi Province, Sumatra, Indonesia. Forest Policy and Economics 81:1-9CrossRefGoogle Scholar
  30. Lam K-C, Ng S, Hui W-C, Chan PK (2005) Environmental quality of urban parks and open spaces in Hong Kong. Environmental Monitoring and Assessment 111:55-73PubMedCrossRefGoogle Scholar
  31. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America 108:3465-3472PubMedPubMedCentralCrossRefGoogle Scholar
  32. Le Menach AL, Mckenzie FE, Flahault A, Smith DL (2005) The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malaria Journal 4:23PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lempp C, Jungwirth N, Grilo ML, Reckendorf A, Ulrich A, van Neer A, Bodewes R, Pfankuche, VM, Bauer C, Osterhaus ADME, Baumgartner W, Siebert U (2017) Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany. PLoS ONE 12:e0175469PubMedPubMedCentralCrossRefGoogle Scholar
  34. Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, Zhou Y, Yao L, Yan G, Chen X (2014) Urbanisation increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Neglected Tropical Diseases 8:e3301PubMedPubMedCentralCrossRefGoogle Scholar
  35. Liew C, Curtis CF (2004) Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Medical and Veterinary Entomology 18:351-360PubMedCrossRefGoogle Scholar
  36. Lopez-Carr D, Burgdorfer J (2013) Deforestation drivers: population, migration, and tropical land use. Environment Science and Policy for Sustainable Development 55:3-11CrossRefGoogle Scholar
  37. Martinuzzi S, Gould WA, Ramos Gonzalez OM (2007) Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data. Landscape and Urban Planning 79:288-297CrossRefGoogle Scholar
  38. McKinney ML (2008) Effects of urbanisation on species richness: a review of plants and animals. Urban Ecosystems 11:161-176CrossRefGoogle Scholar
  39. Meador MR, Coles JF, Zappia H (2005) Fish assemblage responses to urban intensity gradients in contrasting metropolitan areas: Birmingham, Alabama and Boston, Massachusetts In: Effects of Urbanisation on Stream Ecosystems, American Fisheries Society Symposium, Brown LR, Gray RH, Hughes RM, Meador MR (editors), pp 409–423Google Scholar
  40. Meyer Steiger DB, Ritchie SA, Laurance, SG (2016) Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasites & Vectors 9:387CrossRefGoogle Scholar
  41. Midega JT, Smith DL, Olotu A, Mwangangi JM, Nzovu JG, Wambua J, Nyangweso G, Mbogo CM, Christophides GK, Marsh K, Bejon P (2012) Wind direction and proximity to larval sites determines malaria risk in Kilifi district in Kenya. Nature Communications 3:674PubMedPubMedCentralCrossRefGoogle Scholar
  42. Nagendra H, Gopal D (2011) Tree diversity, distribution, history and change in urban parks: studies in Bangalore, India. Urban Ecosystems 12:211-223CrossRefGoogle Scholar
  43. Nor Akmar AA, Konijnendijk CC, Sreetheran M, Nilsson K (2011) Greenspace planning and management in Klang Valley, Peninsular Malaysia. Arboriculture and Urban Forestry 37:99-107Google Scholar
  44. Ochola GO (2018) Natural resource use dilemma: a review of effects of population growth on natural resources in Kenya. International Journal of Environmental Sciences & Natural Resources 13:1-4Google Scholar
  45. Patz J, Daszak P, Tabor GM, Alonso Aguirre A, Pearl M, Epstein J, Wolfe ND, Marm Kilpatrick A, Foufopoulos J, Molyneux D, Bradley DJ (2004) Unhealthy landscape: policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives 112:1092-1098PubMedPubMedCentralCrossRefGoogle Scholar
  46. Potchter O, Cohen P, Bitan A (2006) Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology 26:1695-1711CrossRefGoogle Scholar
  47. Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Jones JW, Coleman RE (2005) Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian Journal of Tropical Medicine 36:1-97Google Scholar
  48. Rattanarithikul R, Harrison BA, Panthusiri P, Peyton EL, Coleman RE (2006) Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian Journal Tropical Medicine 37:1-85Google Scholar
  49. Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Coleman RE (2007) Illustrated keys to the mosquitoes of Thailand V. Genera Orthopodomyia, Kimia, Malaya, Topomyia, Tripteroides, and Toxorhynchites. Southeast Asian Journal Tropical Medicine 38:1-65Google Scholar
  50. Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Coleman RE, Richardson JH (2010). Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian Journal Tropical Medicine 41:1-225Google Scholar
  51. Riley SPD, Busteed GT, Kats LB, Vandergon TL, Lee LFS, Dagit RG, Kerby JL, Fisher RN, Sauvajot RM (2005) Effects of urbanisation on the distribution and abundance of amphibians and invasive species in Southern California. Conservation Biology 19:1894-1907CrossRefGoogle Scholar
  52. Robson JP, Berkes F (2011) Exploring some of the myths of land use change: can rural to urban migration drive declines in biodiversity? Global Environmental Change 21:844-854CrossRefGoogle Scholar
  53. Rozilawati H, Taneselvi K, Nazni WA, Mohd Masri S, Zairi J, Adanan CR, Lee HL (2015) Surveillance of Aedes albopictus Skuse breeding preference in selected dengue outbreak localities, Peninsular Malaysia. Tropical Biomedicine 32:49-64PubMedGoogle Scholar
  54. Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR (2019) Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases 13:e0007231CrossRefGoogle Scholar
  55. Saleeza SN, Norma-Rashid Y, Azirun MS (2013) Mosquito species and outdoor breeding places in residential areas in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health 44:963-969.PubMedGoogle Scholar
  56. Schielein J, Borner J (2018) Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land Use Policy 76:81-94CrossRefGoogle Scholar
  57. Schneider UA, Havlik P, Schmid E, Valin H, Mosnier A, Obersteiner M, Bottcher H, Skalsky R, Balkovic J, Sauer T, Fritz S (2011) Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems 104:204-215CrossRefGoogle Scholar
  58. Seto KC, Guneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America 109:16083-16088PubMedPubMedCentralCrossRefGoogle Scholar
  59. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199-208CrossRefGoogle Scholar
  60. Sibley CG, Liu, JH (2003) Differentiating active and passive littering: a two-stage process model of littering behavior in public spaces. Environment and Behavior 35:415-533CrossRefGoogle Scholar
  61. Smith DL, Dushoff J, McKenzie, FE (2004) The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biology 2:e368PubMedPubMedCentralCrossRefGoogle Scholar
  62. Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across tax, biomes and spatial scales. Ecology Letters 17:866-880PubMedCrossRefGoogle Scholar
  63. Thongsripong P, Green A, Kittayapong P, Kapan D, Wilcox B, Bennett S (2013) Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases. PLoS Neglected Tropical Diseases 7:e2507PubMedPubMedCentralCrossRefGoogle Scholar
  64. Toure SI, Stow DA, Clarke K, Weeks J (2018) Patterns of land cover and land use change within the two major metropolitan areas of Ghana. Geocarto International. [Online 1 October, 2018]
  65. Turok I, McGranahan G (2013) Urbanisation and economic growth: the arguments and evidence for Africa and Asia. Environment and Urbanisation 25:465-482CrossRefGoogle Scholar
  66. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nature 9:532-541Google Scholar
  67. Villegas Vallejos MA, Padial AA, Vitule JRS (2016) Human-induced landscape changes homogenize Atlantic forest bird assemblages through nested species loss. PLoS ONE 11:e0147058PubMedPubMedCentralCrossRefGoogle Scholar
  68. von Dohren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecological Indicators 52:490-497CrossRefGoogle Scholar
  69. Wells K, Lakim MB, O’Hara RB (2014) Shift from native to invasive small mammals across gradients from tropical forest to urban habitat in Borneo. Biodiversity and Conservation 23:289-2303CrossRefGoogle Scholar
  70. Western D (2001) Human-modified ecosystems and future evolution. Proceedings of the National Academy of Sciences of the United States of America 98:5458-5465PubMedPubMedCentralCrossRefGoogle Scholar
  71. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservation as an emerging principle in ecology and conservation biology. Ecology Letters 13:1310-1324PubMedCrossRefGoogle Scholar
  72. World Health Organisation (2014) A global brief on vector-borne diseases. Geneva: WHOGoogle Scholar
  73. Zahouli JBZ, Koudou BG, Muller P, Malone D, Tano Y, Utzinger J (2017) Effect of land-use changes on the abundance, distribution, and host-seeking behaviour of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Cote d’Ivoire. PLoS ONE 12:e0189082PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© EcoHealth Alliance 2019

Authors and Affiliations

  • J. M. Lee
    • 1
    • 3
  • R. J. Wasserman
    • 1
    • 2
  • J. Y. Gan
    • 1
  • R. F. Wilson
    • 1
  • S. Rahman
    • 1
    • 3
  • S. H. Yek
    • 1
    Email author
  1. 1.School of ScienceMonash University MalaysiaBandar SunwayMalaysia
  2. 2.Department of Biology and BiotechnologyBotswana International University of Science and TechnologyPalapyeBotswana
  3. 3.Tropical Medicine and Biology PlatformMonash University MalaysiaBandar SunwayMalaysia

Personalised recommendations