Advertisement

EcoHealth

pp 1–11 | Cite as

Impact of Sylvatic Plague Vaccine on Non-target Small Rodents in Grassland Ecosystems

  • Gebbiena M. Bron
  • Katherine L. D. Richgels
  • Michael D. Samuel
  • Julia E. Poje
  • Faye Lorenzsonn
  • Jonathan P. Matteson
  • Jesse T. Boulerice
  • Jorge E. Osorio
  • Tonie E. Rocke
Original Contribution

Abstract

Oral vaccination is an emerging management strategy to reduce the prevalence of high impact infectious diseases within wild animal populations. Plague is a flea-borne zoonosis of rodents that often decimates prairie dog (Cynomys spp.) colonies in the western USA. Recently, an oral sylvatic plague vaccine (SPV) was developed to protect prairie dogs from plague and aid recovery of the endangered black-footed ferret (Mustela nigripes). Although oral vaccination programs are targeted toward specific species, field distribution of vaccine-laden baits can result in vaccine uptake by non-target animals and unintended indirect effects. We assessed the impact of SPV on non-target rodents at paired vaccine and placebo-treated prairie dog colonies in four US states from 2013 to 2015. Bait consumption by non-target rodents was high (70.8%, n = 3113), but anti-plague antibody development on vaccine plots was low (23.7%, n = 266). In addition, no significant differences were noted in combined deer mice (Peromyscus maniculatus) and western harvest mouse (Reithrodontomys megalotis) abundance or community evenness and richness of non-target rodents between vaccine-treated and placebo plots. In our 3-year field study, we could not detect a significant positive or negative effect of SPV application on non-target rodents.

Keywords

Plague Yersinia pestis Sylvatic plague vaccine Non-target rodents Peromyscus Onychomys leucogaster 

Notes

Acknowledgements

This research and GMB were supported by the Morris Animal Foundation (#D14ZO-031 and #D14ZO-412) and the U.S. Geological Survey. GMB performed this work with the USGS while she was a graduate student at the University of Wisconsin. We thank J. Cordova and G. Schroeder for trapping and sampling small rodents and sharing their samples and data. We also thank R. Russell for quantitative insight and expertise, D. Biggins and D. Tripp for methodological advice and D. Biggins, D. Eads, M.R. Matchett, M. McCollister, R. Griebel, A. Kavalunas and B. Maxfield for field support. We are very grateful to C. Crill, C. Tremper, K. Bach, Z. Vizer, N. Pawlikovsky, L. Brenner, A. Andrews, T. Brown, M. Murphy, K. Heitkamp, K. Palframan, J. Gruel, C. Poje, R. Larson, K. Murphy, C. Salas-Quinchucua, C. Malavé, E. Falendysz, J. Williamson, S. Smith, R. Abbott and others for field and laboratory assistance. This manuscript was greatly improved by comments from B. Christensen, B. Connely, R. Abbott and two anonymous reviewers. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Supplementary material

10393_2018_1334_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 90 kb)
10393_2018_1334_MOESM2_ESM.pdf (164 kb)
Supplementary material 2 (PDF 165 kb)

References

  1. Abbott RC, Hudak R, Mondesire R, Baeten LA, Russell RE, Rocke TE (2014) A rapid field test for sylvatic plague exposure in wild animals. Journal of Wildlife Diseases 50:384-388.  https://doi.org/10.7589/2013-07-174 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abbott RC, Russell RE, Richgels KLD, Tripp DW, Matchett MR, Biggins DE, Rocke TE (2017) Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs. Ecohealth  https://doi.org/10.1007/s10393-017-1294-1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson SH, Williams ES (1997) Plague in a complex of white-tailed prairie dogs and associated small mammals in Wyoming. Journal of Wildlife Diseases 33:720–732.  https://doi.org/10.7589/0090-3558-33.4.720 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antolin MF, Gober P, Dakota S, Biggins DE, Collins F, Lockhart M, Ball M (2002) The influence of sylvatic plague on North American wildlife at the landscape level with special emphasis on black-footed ferret and prairie dog conservation. In: Transactions of the Sixty-Seventh North American Wildlife and Natural Resources Conference, pp 104–127Google Scholar
  5. Barton K (2016) MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn
  6. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1–48.  https://doi.org/10.1177/009286150103500418 CrossRefGoogle Scholar
  7. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends in Ecology and Evolution 23:361–368CrossRefPubMedCentralGoogle Scholar
  8. Brickner, KM, Grenier, MB, Crosier, AE & Pauli, JN (2014) Foraging plasticity in a highly specialized carnivore, the endangered black-footed ferret. Biological Conservation 169: 1–5.CrossRefGoogle Scholar
  9. Bron GM (2017) The Role of Short-Lived Rodent in Plague Ecology on Prairie Dog Colonies, Ph.D. Thesis, University of Wisconsin-MadisonGoogle Scholar
  10. Burnham KP, Anderson RP (2004) Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research 33:261–304.  https://doi.org/10.1177/0049124104268644 CrossRefGoogle Scholar
  11. Crowcroft P, Jeffers JNR (1961) Variability in the behaviour of wild house mice (mus musculus) towards live traps. Journal of Zoology 137:573–582.Google Scholar
  12. Cully Jr, JF, Barnes, AM, Quan, TJ, & Maupln, G (1997) Dynamics of plague in a Gunnison’s prairie dog colony complex from New Mexico. Journal of Wildlife Diseases, 33: 706-719CrossRefPubMedCentralGoogle Scholar
  13. Cully JF, Williams ES (2001) Interspecific comparison of sylvatic plague in prairie dogs. Journal of Mammalogy 82:894–905.CrossRefGoogle Scholar
  14. Domenico J, Lucas JJ, Fujita M, Gelfand EW (2012) Susceptibility to vaccinia virus infection and spread in mice is determined by age at infection, allergen sensitization and mast cell status. International Archives Allergy Immunology 158:196–205.CrossRefGoogle Scholar
  15. Eads DA, Biggins DE (2015) Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America. Conservation Biology 29: 1086-1093.  https://doi.org/10.1111/cobi.12498 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eskey CR, Haas VH (1939) Plague in the western part of the United States. Public Health Reports 54:1467–1481.CrossRefGoogle Scholar
  17. Fernandez JR-R, Rocke TE (2011) Use of rhodamine B as a biomarker for oral plague vaccination of prairie dogs. Journal of Wildlife Diseases 47:765–8.CrossRefPubMedCentralGoogle Scholar
  18. Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annual Review of Entomology 50:505–28.  https://doi.org/10.1146/annurev.ento.50.071803.130337 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Holdenried R, Quan SF (1956) Susceptibility of New Mexico Rodents to Experimental Plague. Public Health Reports 71:979–984.CrossRefPubMedCentralGoogle Scholar
  20. Jenkerson CB, Maiersperger T, Schmidt G (2010) eMODIS: A user-friendly data source: U.S. Geological Survey Open-File Report 2010–1055Google Scholar
  21. Kartman, L, Prince, FM, Quan, SF, & Stark, HE (1958). New knowledge on the ecology of sylvatic plague. Annals of the New York Academy of Sciences, 70:668-711.CrossRefPubMedCentralGoogle Scholar
  22. Kotliar N, Baker B, Whicker A, Plumb G (1999) A critical review of assumptions about the prairie dog as a keystone species. Environmental Management 24:177–192.CrossRefPubMedCentralGoogle Scholar
  23. Krebs, CJ, Gaines, MS, Keller, BL, Myers, JH, & Tamarin, RH (1973) Population cycles in small rodents. Science, 179:35-41.CrossRefPubMedCentralGoogle Scholar
  24. Lane J. M, Ruben FL., Neff JM., Millar J. D. (1970) Complications of smallpox vaccination, 1968: results of ten statewide surveys. Journal of Infectious Diseases 122:303–309.CrossRefPubMedCentralGoogle Scholar
  25. McCoy GW, Smith FC (1910) The susceptibility to plague of the prairie dog, the desert wood rat, and the rock squirrel. The Journal of Infectious Diseases 7:374–376.CrossRefGoogle Scholar
  26. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4:133–142.  https://doi.org/10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  27. Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Minchin PR, Hara RBO, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Package “vegan”. ISBN 0-387-95457-0Google Scholar
  28. Pauli JN, Buskirk SW, Williams ES, Edwards WH (2006) A plague epizootic in the black-tailed prairie dog (Cynomys ludovicianus). Journal of Wildlife Diseases 42:74–80.CrossRefPubMedCentralGoogle Scholar
  29. R Core Team (2017) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  30. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biological Reviews 82:291–318CrossRefPubMedCentralGoogle Scholar
  31. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12:77.  https://doi.org/10.1186/1471-2105-12-77 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rocke TE, Kingstad-Bakke B, Berlier W, Osorio JE (2014) A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague. Vaccines 2:772–784.  https://doi.org/10.3390/vaccines2040772 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rocke TE, Iams KP, Dawe S, Smith SR, Williamson JL, Heisey DM, Osorio JE (2010a) Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis). Vaccine 28:338–344.  https://doi.org/10.1016/j.vaccine.2009.10.043 CrossRefGoogle Scholar
  34. Rocke, T. E., Mencher, J., Smith, S. R., Friedlander, A. M., Andrews, G. P., Baeten, L. A. (2004). Recombinant F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against virulent Yersinia pestis infection. Journal of Zoo and Wildlife Medicine 35: 142-146.CrossRefPubMedCentralGoogle Scholar
  35. Rocke TE, Pussini N, Smith SR, Williamson J, Powell B, Osorio JE (2010b) Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus). Vector-Borne and Zoonotic Diseases 10: 53–8.  https://doi.org/10.1089/vbz.2009.0050 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rocke TE, Smith SR, Stinchcomb DT, Osorio JE (2008) Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits. Journal of Wildlife Diseases 44:930–937.CrossRefPubMedCentralGoogle Scholar
  37. Rocke TE, Tripp D, Lorenzsonn F, Falendysz E, Smith S, Williamson J, Abbott R (2015) Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni). EcoHealth 278–287.  https://doi.org/10.1007/s10393-014-1002-3 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rocke, TE, Tripp, DW, Russell, RE, Abbott, RC, Richgels, KLD, Matchett, MR, Biggins, DE, Griebel, R, Schroeder, G, Grassel, SM, Pipkin, DR, Cordova, J, Kavalunas, A, Maxfield, B, Boulerice, J, Miller, MW (2017) Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials. EcoHealth 14:438-450.  https://doi.org/10.1007/s10393-017-1253-x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rocke TE, Williamson J, Cobble KR, Busch JD, Antolin MF, Wagner DM (2011) Resistance to plague among black-tailed prairie dog populations. Vector-Borne and Zoonotic Diseases 12: 111-116.  https://doi.org/10.1089/vbz.2011.0602 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Salkeld DJ, Salathé M, Stapp P, Jones JH (2010) Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance. Proceedings of the National Academy of Sciences 107:14247–50.  https://doi.org/10.1073/pnas.1002826107 CrossRefGoogle Scholar
  41. Slade, NA, Blair, SM (2000) An empirical test of using counts of individuals captured as indices of population size. Journal of Mammalogy, 81:1035-1045.CrossRefGoogle Scholar
  42. Slate D, Rupprecht CE, Rooney JA., Donovan D, Lein DH, Chipman RB (2005) Status of oral rabies vaccination in wild carnivores in the United States. Virus Research 111:68–76.  https://doi.org/10.1016/j.virusres.2005.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stapp P, Salkeld DJ, Eisen RJ, Pappert R, Young J, Carter LG, Gage KL, Tripp DW, Antolin MF (2008) Exposure of small rodents to plague during epizootics in black-tailed prairie dogs. Journal of Wildlife Diseases 44:724–30.CrossRefPubMedCentralGoogle Scholar
  44. Stapp P, Salkeld DJ, Franklin HA, Kraft JP, Tripp DW, Antolin MF, Gage KL (2009) Evidence for the involvement of an alternate rodent host in the dynamics of introduced plague in prairie dogs. Journal of Animal Ecology 78:807–17.  https://doi.org/10.1111/j.1365-2656.2009.01541.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Thomas, RE, Barnes, AM, Quan, TJ, Beard, ML, Carter, LG, & Hopla, CE (1988) Susceptibility to Yersinia pestis in the northern grasshopper mouse (Onychomys leucogaster). Journal of Wildlife Diseases, 24:327-333.CrossRefPubMedCentralGoogle Scholar
  46. Tripp DW, Rocke TE, Streich SP, Abbott RC, Osorio JE, Miller MW (2015) Apparent field safety of raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys Spp.), Colorado, USA. Journal of Wildlife Diseases 51:401–410.  https://doi.org/10.7589/2014-02-051 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tripp DW, Rocke TE, Streich SP, Brown NL, Fernandez JR-R, Miller MW (2014) Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA. Journal of Wildlife Diseases. 50: 224-234:  https://doi.org/10.7589/2013-04-100 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tsao JI, Wootton JT, Bunikis J, Luna MG, Fish D, Barbour AG (2004) An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proceedings of the National Academy of Sciences 101:18159–64.  https://doi.org/10.1073/pnas.0405763102 CrossRefGoogle Scholar
  49. Whicker, A., Detling, J.K. (1988) Ecological consequences of prairie dog disturbances. BioScience 38, 778–785CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection  2018

Authors and Affiliations

  • Gebbiena M. Bron
    • 1
    • 2
  • Katherine L. D. Richgels
    • 2
  • Michael D. Samuel
    • 5
  • Julia E. Poje
    • 1
    • 3
  • Faye Lorenzsonn
    • 2
    • 4
  • Jonathan P. Matteson
    • 1
  • Jesse T. Boulerice
    • 6
  • Jorge E. Osorio
    • 1
  • Tonie E. Rocke
    • 2
  1. 1.Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.U.S. Geological SurveyNational Wildlife Health CenterMadisonUSA
  3. 3.Department of Forest and Wildlife EcologyUniversity of Wisconsin–MadisonMadisonUSA
  4. 4.School of Veterinary MedicineUniversity of Wisconsin–MadisonMadisonUSA
  5. 5.Wisconsin Cooperative Wildlife Research UnitU.S. Geological SurveyMadisonUSA
  6. 6.Wyoming Game and Fish DepartmentLaramieUSA

Personalised recommendations