Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantitative analysis of retinal nerve fiber layer defect in early open-angle glaucoma with normal intraocular pressure

  • 16 Accesses



To quantitatively analyze the topographic features of localized retinal nerve fiber layer (RNFL) defects according to baseline intraocular pressure (IOP) level in cases of early primary open-angle glaucoma (POAG).

Study design

Retrospective comparative study.


POAG patients meeting the following conditions were consecutively included: (1) baseline office-hour diurnal IOP ≤ 21 mmHg, (2) 1 localized RNFL defect as observed on red-free fundus photography, and (3) corresponding visual field defect. Defects’ approximations to the macula (angle α) and width (angle ß) as well as the angle between the disc long axis and the vertical meridian line (angle Ɣ) were measured on red-free fundus photography. The corrected angle α was calculated as the difference between angles α and Ɣ. The defect area’s RNFL thickness was calculated by means of optical coherence tomography’s Advanced Extraction analysis utility.


Comparative analysis was performed between 2 groups: 45 eyes of 45 patients with low-teen IOP (group A: highest IOP ≤ 15 mmHg) and 49 eyes of 49 patients with high-teen IOP (group B: lowest IOP > 15 mmHg). In group A, the mean baseline IOP was lower (12.9 ± 1.3 vs 17.1 ± 1.0 mmHg; P < .001), the corrected angle α was smaller (32.4 ± 15.1 vs 39.5 ± 13.1 degrees; P = .017), and the defect area’s RNFL thickness was thinner (66.3 ± 16.8 vs 76.3 ± 14.9 μm; P = .003) than in group B; angle ß showed no intergroup difference (P = .230).


In POAG patients with low-teen IOP relative to those with high-teen IOP, localized RNFL defects were closer to the macula. In addition, the RNFL thickness of the defect area was markedly thinner.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999;43:293–320.

  2. 2.

    Soto I, Pease ME, Son JL, Shi X, Quigley HA, Marsh-Armstrong N. Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Investig Ophthalmol Vis Sci. 2011;52:434–41.

  3. 3.

    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.

  4. 4.

    Medeiros FA, Zangwill LM, Anderson DR, Liebmann JM, Girkin CA, Harwerth RS, et al. Estimating the rate of retinal ganglion cell loss in glaucoma. Am J Ophthalmol. 2012;154(814–24):e1.

  5. 5.

    Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol. 2009;127:1250–6.

  6. 6.

    Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.

  7. 7.

    Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Weinreb RN. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009;116(1125–33):e1–3.

  8. 8.

    Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Investig Ophthalmol Vis Sci. 2010;51:217–22.

  9. 9.

    Strouthidis NG, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Investig Ophthalmol Vis Sci. 2006;47:2904–10.

  10. 10.

    Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Investig Ophthalmol Vis Sci. 2004;45:3152–60.

  11. 11.

    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(701–13):829–30.

  12. 12.

    Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I, et al. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112:366–75.

  13. 13.

    Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–70.

  14. 14.

    Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–46.

  15. 15.

    Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

  16. 16.

    Lee J, Kong M, Kim J, Kee C. Comparison of visual field progression between relatively low and high intraocular pressure groups in normal tension glaucoma patients. J Glaucoma. 2014;23:553–60.

  17. 17.

    Yamagami J, Shirato S, Araie M. The influence of the intraocular pressure on the visual field of low tension glaucoma [in Japanese]. Nippon Ganka Gakkai Zasshi. 1990;94:514–8.

  18. 18.

    Kim DM, Seo JH, Kim SH, Hwang SS. Comparison of localized retinal nerve fiber layer defects between a low-teen intraocular pressure group and a high-teen intraocular pressure group in normal-tension glaucoma patients. J Glaucoma. 2007;16:293–6.

  19. 19.

    Woo SJ, Park KH, Kim DM. Comparison of localised nerve fibre layer defects in normal tension glaucoma and primary open angle glaucoma. Br J Ophthalmol. 2003;87:695–8.

  20. 20.

    Jonas JB, Grundler AE, Gonzales-Cortes J. Pressure-dependent neuroretinal rim loss in normal-pressure glaucoma. Am J Ophthalmol. 1998;125:137–44.

  21. 21.

    Lee SH, Kim GA, Lee W, Bae HW, Seong GJ, Kim CY. Vascular and metabolic comorbidities in open-angle glaucoma with low- and high-teen intraocular pressure: a cross-sectional study from South Korea. Acta Ophthalmol. 2017;95:e564–74.

  22. 22.

    Lee WJ, Jeoung JW, Na KI, Kim YK, Kim CY, Park KH. Relationship between open-angle glaucoma and stroke: a 2010 to 2012 Korea National Health and Nutrition Examination Survey. J Glaucoma. 2018;27:22–7.

  23. 23.

    Ahrlich KG, De Moraes CGV, Teng CC, Prata TS, Tello C, Ritch R, et al. Visual field progression differences between normal-tension and exfoliative high-tension glaucoma. Investig Ophthalmol Vis Sci. 2010;51:1458–63.

  24. 24.

    Mozaffarieh M, Grieshaber MC, Flammer J. Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis. 2008;14:224.

  25. 25.

    Karakucuk S, Goktas S, Aksu M, Erdogan N, Demirci S, Oner A, et al. Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS). Graefes Arch Clin Exp Ophthalmol. 2008;246:129–34.

  26. 26.

    Radius RL. Thickness of the retinal nerve fiber layer in primate eyes. Arch Ophthalmol. 1980;98:1625–9.

  27. 27.

    Kim YK, Ha A, Na KI, Kim HJ, Jeoung JW, Park KH. Temporal relation between macular ganglion cell–inner plexiform layer loss and peripapillary retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2017;124:1056–64.

  28. 28.

    Marshall HN, Andrew NH, Hassall M, Qassim A, Souzeau E, Ridge B, et al. Macular ganglion cell–inner plexiform layer loss precedes peripapillary retinal nerve fiber layer loss in glaucoma with lower intraocular pressure. Ophthalmology. 2019;126:1119–30.

  29. 29.

    Hwang YH, Jeong YC, Kim HK, Sohn YH. Macular ganglion cell analysis for early detection of glaucoma. Ophthalmology. 2014;121:1508–15.

  30. 30.

    Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011;118:1782–9.

  31. 31.

    Tojo N, Abe S, Ishida M, Yagou T, Hayashi A. The fluctuation of intraocular pressure measured by a contact lens sensor in normal-tension glaucoma patients and nonglaucoma subjects. J Glaucoma. 2017;26:195–200.

  32. 32.

    Agnifili L, Mastropasqua R, Frezzotti P, Fasanella V, Motolese I, Pedrotti E, et al. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. 2015;93:e14–21.

  33. 33.

    Lee YR, Kook MS, Joe SG, Na JH, Han S, Kim S, et al. Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Investig Ophthalmol Vis Sci. 2012;53:881–7.

  34. 34.

    Pajic B, Pajic-Eggspuchler B, Haefliger I. Continuous IOP fluctuation recording in normal tension glaucoma patients. Curr Eye Res. 2011;36:1129–38.

Download references

Author information

Correspondence to Ki Ho Park.

Ethics declarations

Conflicts of interest

A. Ha, None; T. J. Kim, None; W. J. Lee, None; D. M. Kim, None; J. W. Jeoung, None; Y. K. Kim, None; K. H. Park, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Ki Ho Park

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, A., Kim, T.J., Lee, W.J. et al. Quantitative analysis of retinal nerve fiber layer defect in early open-angle glaucoma with normal intraocular pressure. Jpn J Ophthalmol (2020). https://doi.org/10.1007/s10384-019-00704-4

Download citation


  • Intraocular pressure
  • Normal-tension glaucoma
  • Open-angle glaucoma
  • Optical coherence tomography
  • Retinal nerve fiber layer defect