Japanese Journal of Ophthalmology

, Volume 63, Issue 6, pp 467–473 | Cite as

Effect of Visibility of the Ciliary Body Processes on Ocular Biometric Parameters in Patients with Primary Angle Closure

  • Wasu Supakontanasan
  • Panintorn Thunwiriya
  • Yanin SuwanEmail author
  • Suthaphat Nilphatanakorn
  • Sira Arunmongkol
  • Chaiwat Teekhasaenee
Clinical Investigation



To evaluate the differences in ocular biometric parameters between eyes with primary angle closure (PAC) with and without visible ciliary body processes (CBP) (PAC+CBP and PAC-CBP) and normal open-angle controls.

Study design

Cross-sectional study.


Eyes with PAC and normal open-angle controls underwent detailed ocular examinations and gonioscopy to determine the visibility of the CBP. The following ocular biometric parameters were determined using A-scan ultrasound biometry: axial length (AL), anterior chamber depth (ACD), lens thickness (LT), and vitreous length (VL). The lens–axial length factor (LAF) and relative lens position (RLP) were also calculated. Continuous variables were assessed by analysis of variance with Bonferroni correction. Multiple linear regression analysis was performed to adjust for confounding factors. Area under the receiver operating characteristic curves were calculated to determine the diagnostic capability of biometric parameters.


84 PAC+CBP eyes, 57 PAC-CBP eyes, and 32 normal open angle control eyes were evaluated. The means of the ocular biometric values were significantly different among the three groups. AL, ACD, LT, VL, LAF, and RLP were also significantly different among the three groups in the multivariate regression analysis. AL, ACD, and VL were lower in the PAC+CBP group and LT, RLP, and LAF were greater in the PAC+CBP group than in the PAC-CBP and control groups. LAF ≥ 2.4 is the cutting point with the highest sensitivity and specificity to differentiate PAC+CBP from PAC-CBP.


The ocular biometric parameters in the PAC+CBP group were more strongly associated with a crowded anterior segment than in the other groups. Visibility of CBP in PAC-affected eyes may serve as a surrogate for an anterior segment crowding mechanism and help to select the most appropriate treatment in individual cases.


Ciliary body processes primary angle closure biometry mechanism 


Conflicts of interest

W. Supakontanasan, None; P. Thunwiriya, None; Y. Suwan, None; S. Nilphatanakorn, None; S. Arunmongkol, None; C. Teekhasaenee, None.


  1. 1.
    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.CrossRefGoogle Scholar
  2. 2.
    Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1:e339–49.CrossRefGoogle Scholar
  3. 3.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.CrossRefGoogle Scholar
  4. 4.
    Ritch R, Lowe RF. Angle closure glaucoma: mechanisms and epidemiology. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. 2nd ed. St. Louis, MO: Mosby; 1996. p. 801–19.Google Scholar
  5. 5.
    Thomas R, Arun T, Muliyil J, George R. Outcome of laser peripheral iridotomy in chronic primary angle closure glaucoma. Ophthalmic Surg Lasers. 1999;30:547–53.PubMedGoogle Scholar
  6. 6.
    He M, Friedman DS, Ge J, Huang W, Jin C, Lee PS, Khaw PT, et al. Laser peripheral iridotomy in primary angle-closure suspects: biometric and gonioscopic outcomes: the Liwan Eye Study. Ophthalmology. 2007;114:494–500.CrossRefGoogle Scholar
  7. 7.
    Wang N, Wu H, Fan Z. Primary angle closure glaucoma in Chinese and Western populations. Chin Med J (Engl). 2002;115(11):1706–15.Google Scholar
  8. 8.
    Marchini G, Pagliarusco A, Toscano A, Tosi R, Brunelli C, Bonomi L. Ultrasound biomicroscopic and conventional ultrasonographic study of ocular dimensions in primary angle-closure glaucoma. Ophthalmology. 1998;105(11):2091–8.CrossRefGoogle Scholar
  9. 9.
    Sihota R, Lakshmaiah NC, Agarwal HC, Pandey RM, Titiyal JS. Ocular parameters in the subgroups of angle closure glaucoma. Clin Exp Ophthalmol. 2000;28(4):253–8.CrossRefGoogle Scholar
  10. 10.
    Nongpiur ME, He M, Amerasinghe N, Friedman DS, Tay WT, Baskaran M, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011;118:474–9.CrossRefGoogle Scholar
  11. 11.
    Lowe RF. Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol. 1970;54(3):161–9.CrossRefGoogle Scholar
  12. 12.
    Lowe RF. Causes of shallow anterior chamber in primary angle-closure glaucoma. Ultrasonic biometry of normal and angle-closure glaucoma eyes. Am J Ophthalmol. 1969;67:87–93.CrossRefGoogle Scholar
  13. 13.
    Salmon JF, Swanevelder SA, Donald MA. The dimensions of eyes with chronic angle-closure glaucoma. J Glaucoma. 1994;3:237–43.CrossRefGoogle Scholar
  14. 14.
    Saxena S, Agrawal PK, Pratap VB, Nath R. Anterior chamber depth and lens thickness in primary angle-closure glaucoma: a case-control study. Indian J Ophthalmol. 1993;41:71–3.PubMedGoogle Scholar
  15. 15.
    Tomlinson A, Leighton DA. Ocular dimensions in the heredity of angle-closure glaucoma. Br J Ophthalmol. 1973;57:475–86.CrossRefGoogle Scholar
  16. 16.
    Foster PJ. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy. Semin Ophthalmol. 2002;17:50–8.CrossRefGoogle Scholar
  17. 17.
    George R, Paul PG, Baskaran M, Ramesh SV, Raju P, Arvind H, et al. Ocular biometry in occludable angles and angle closure glaucoma: a population based survey. Br J Ophthalmol. 2003;87:399–402.CrossRefGoogle Scholar
  18. 18.
    Suwan Y, Jiamsawad S, Supakontanasan W, Teekhasaenee C. Hidden mechanisms beyond the pupillary block in acute angle closure: ultrasound biomicroscopic study. Clin Exp Ophthalmol. 2017;45:366–70.CrossRefGoogle Scholar
  19. 19.
    Asawaphureekorn S. New approaches to visualize the anterior chamber angle. In: Hong C, Yamamoto T, Paek KH, Kim YY, editors. Angle closure glaucoma. Amsterdam: Kugler Publications; 2007. p. 101–13.Google Scholar
  20. 20.
    Markowitz SN, Morin JD. Angle-closure glaucoma: relation between lens thickness, anterior chamber depth and age. Can J Ophthalmol. 1984;19:300–2.PubMedGoogle Scholar
  21. 21.
    Alsbirk PH. Primary angle-closure glaucoma. Oculometry, epidemiology, and genetics in a high risk population. Acta Ophthalmol Suppl. 1976;127:5–31.Google Scholar
  22. 22.
    Markowitz SN, Morin JD. The ratio of lens thickness to axial length for biometric standardization in angle-closure glaucoma. Am J Ophthalmol. 1985;99:400–2.CrossRefGoogle Scholar
  23. 23.
    Chen H, Lin H, Lin Z, Chen J, Chen W. Distribution of axial length, anterior chamber depth, and corneal curvature in an aged population in South China. BMC Ophthalmol. 2016;16:47.CrossRefGoogle Scholar
  24. 24.
    Foster PJ, Broadway DC, Hayat S, Luben R, Dalzell N, Bingham S, et al. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study. Br J Ophthalmol. 2010;94:827–30.CrossRefGoogle Scholar
  25. 25.
    Sihota R, Gupta V, Agarwal HC, Pandey RM, Deepak KK. Comparison of symptomatic and asymptomatic, chronic, primary angle-closure glaucoma, open-angle glaucoma, and controls. J Glaucoma. 2000;9:208–13.CrossRefGoogle Scholar
  26. 26.
    Otori Y, Tomita Y, Hamamoto A, Fukui K, Usui S, Tatebayashi M. Relationship between relative lens position and appositional closure in eyes with narrow angles. Jpn J Ophthalmol. 2011;55:103–6.CrossRefGoogle Scholar
  27. 27.
    Chen YY, Chen YY, Sheu SJ, Chou P. The biometric study in different stages of primary angle-closure glaucoma. Eye (Lond). 2013;27:1070–6.CrossRefGoogle Scholar
  28. 28.
    Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000;107:2300–4.CrossRefGoogle Scholar
  29. 29.
    Nolan WP, Foster PJ, Devereux JG, Uranchimeg D, Johnson GJ, Baasanhu J. YAG laser iridotomy treatment for primary angle closure in east Asian eyes. Br J Ophthalmol. 2000;84:1255–9.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2019

Authors and Affiliations

  • Wasu Supakontanasan
    • 1
  • Panintorn Thunwiriya
    • 1
  • Yanin Suwan
    • 1
    Email author
  • Suthaphat Nilphatanakorn
    • 1
  • Sira Arunmongkol
    • 1
  • Chaiwat Teekhasaenee
    • 1
  1. 1.Department of OphthalmologyRamathibodi Hospital, Mahidol UniversityBangkokThailand

Personalised recommendations