Advertisement

Arteriovenous crossing associated with branch retinal vein occlusion

  • Yuki MuraokaEmail author
  • Akitaka Tsujikawa
Forefront Review Organizer: Hiroyuki Iijima, MD, PhD
  • 25 Downloads

Abstract

Branch retinal vein occlusion (BRVO) is defined as the focal occlusion of a first or second-order branch of retinal vein, which occurs most frequently at an arteriovenous (AV) crossing. Direct ophthalmoscopy, color fundus photography, and fluorescein angiography facilitate observation of AV crossings parallel to the retinal plane. Optical coherence tomography (OCT), with its high-depth resolution, enables observation of retinal lesions perpendicular to the retinal plane. OCT angiography (OCTA) provides depth-resolved images of the retinal vasculature by segmenting three-dimensional data. In this review, we discuss novel findings related to affected AV crossings associated with BRVO obtained via OCT and OCTA. The high-depth resolution of OCT or OCTA is useful for observation of the narrowed vein and determination of the vessel position of the affected AV crossing. Studies using OCT and OCTA have shown that BRVO caused by a venous overcrossing is more prevalent than previously reported, and that venous narrowing was significantly greater in instances caused by a venous overcrossing than in those caused by an arterial overcrossing. Moreover, OCTA also revealed that the retinal nonperfusion area size was larger in eyes with BRVO caused by a venous overcrossing than in those with BRVO caused by an arterial overcrossing. This contrasts with earlier findings obtained by conventional imaging modalities predating OCT, which showed that an arterial overcrossing was more common than a venous overcrossing at the causative venous occlusion site in eyes with BRVO. This review discusses these findings and their significance in the study of AV crossing associated with BRVO.

Keywords

Branch retinal vein occlusion Arteriovenous crossing Venous overcrossing Optical coherence tomography Optical coherence tomography angiography 

Notes

Conflicts of interest

Y. Muraoka, Lecture fees (Santen, Senju, Nidek, Canon, Bayer); A. Tsujikawa, Grants (Novartis, Bayer, Santen, Canon), Lecture fees (Novartis, Bayer, Alcon, Santen, Senju, Nidek, AMO, Sanwa Kagaku, Kowa, Chugai, Johnson, Kyoto Drug, Hoya, Otsuka, Daiichi-Sankyo, Wakamoto, Janssen, Canon).

References

  1. 1.
    Hayreh SS, Zimmerman MB. Fundus changes in branch retinal vein occlusion. Retina. 2015;35:1016–27.CrossRefGoogle Scholar
  2. 2.
    Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: natural history of visual outcome. JAMA Ophthalmol. 2014;132:13–22.CrossRefGoogle Scholar
  3. 3.
    Hayreh SS. Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res. 2014;41:1–25.CrossRefGoogle Scholar
  4. 4.
    Klein R, Klein BE, Moss SE, Meuer SM. The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study. Trans Am Ophthalmol Soc. 2000;98:133–41.Google Scholar
  5. 5.
    Jonas J, Paques M, Mones J, Glacet-Bernard A. Retinal vein occlusions. Dev Ophthalmol. 2010;47:111–35.CrossRefGoogle Scholar
  6. 6.
    Frangieh GT, Green WR, Barraquer-Somers E, Finkelstein D. Histopathologic study of nine branch retinal vein occlusions. Arch Ophthalmol. 1982;100:1132–40.CrossRefGoogle Scholar
  7. 7.
    Osterloh MD, Charles S. Surgical decompression of branch retinal vein occlusions. Arch Ophthalmol. 1988;106:1469–71.CrossRefGoogle Scholar
  8. 8.
    Duker JS, Brown GC. Anterior location of the crossing artery in branch retinal vein obstruction. Arch Ophthalmol. 1989;107:998–1000.CrossRefGoogle Scholar
  9. 9.
    Weinberg D, Dodwell DG, Fern SA. Anatomy of arteriovenous crossings in branch retinal vein occlusion. Am J Ophthalmol. 1990;109:298–302.CrossRefGoogle Scholar
  10. 10.
    Feist RM, Ticho BH, Shapiro MJ, Farber M. Branch retinal vein occlusion and quadratic variation in arteriovenous crossings. Am J Ophthalmol. 1992;113:664–8.CrossRefGoogle Scholar
  11. 11.
    Sekimoto M, Hayasaka S, Setogawa T. Type of arteriovenous crossing at site of branch retinal vein occlusion. Jpn J Ophthalmol. 1992;36:192–6.Google Scholar
  12. 12.
    Zhao J, Sastry SM, Sperduto RD, Chew EY, Remaley NA. Arteriovenous crossing patterns in branch retinal vein occlusion. The Eye Disease Case-Control Study Group. Ophthalmology 1993;100:423–8.Google Scholar
  13. 13.
    Weinberg DV, Egan KM, Seddon JM. Asymmetric distribution of arteriovenous crossings in the normal retina. Ophthalmology. 1993;100:31–6.CrossRefGoogle Scholar
  14. 14.
    Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145:273–80.CrossRefGoogle Scholar
  15. 15.
    Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, Ota M, Ogino K, et al. Relationship between perifoveal capillaries and pathomorphology in macular oedema associated with branch retinal vein occlusion. Eye. 2012;26:771–80.CrossRefGoogle Scholar
  16. 16.
    Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Miyamoto K, Yoshimura N. Branch retinal vein occlusion-associated subretinal hemorrhage. Jpn J Ophthalmol. 2013;57:275–82.CrossRefGoogle Scholar
  17. 17.
    Muraoka Y, Tsujikawa A, Takahashi A, Iida Y, Murakami T, Ooto S, et al. Foveal damage due to subfoveal hemorrhage associated with branch retinal vein occlusion. PLoS One. 2015;10:e0144894.CrossRefGoogle Scholar
  18. 18.
    Muraoka Y, Tsujikawa A, Kumagai K, Akiba M, Ogino K, Murakami T, et al. Age- and hypertension-dependent changes in retinal vessel diameter and wall thickness: an optical coherence tomography study. Am J Ophthalmol. 2013;156:706–14.CrossRefGoogle Scholar
  19. 19.
    Muraoka Y, Tsujikawa A, Kumagai K, Akagi-Kurashige Y, Ogino K, Murakami T, et al. Retinal vessel tortuosity associated with central retinal vein occlusion: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2014;55:134–41.CrossRefGoogle Scholar
  20. 20.
    Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100.CrossRefGoogle Scholar
  21. 21.
    Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.CrossRefGoogle Scholar
  22. 22.
    Suzuki N, Hirano Y, Yoshida M, Tomiyasu T, Uemura A, Yasukawa T, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2016;161:126–32.CrossRefGoogle Scholar
  23. 23.
    Wons J, Pfau M, Wirth MA, Freiberg FJ, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion. Ophthalmologica. 2016;235:195–202.CrossRefGoogle Scholar
  24. 24.
    Kadomoto S, Muraoka Y, Ooto S, Miwa Y, Iida Y, Suzuma K, et al. Evaluation of macular ischemia in eyes with branch retinal vein occlusion: An optical coherence tomography angiography study. Retina. 2018;38:272–82.CrossRefGoogle Scholar
  25. 25.
    Ghashut R, Muraoka Y, Ooto S, Iida Y, Miwa Y, Suzuma K, et al. Evaluation of macular ischemia in eyes with central retinal vein occlusion: an optical coherence tomography angiography study. Retina. 2018;38:1571–80.CrossRefGoogle Scholar
  26. 26.
    Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Kumagai K, Miyamoto K, et al. Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology. 2013;120:91–9.CrossRefGoogle Scholar
  27. 27.
    Iida Y, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida-Miwa Y, et al. Morphologic and functional retinal vessel changes in branch retinal vein occlusion: an optical coherence tomography angiography study. Am J Ophthalmol. 2017;182:168–79.CrossRefGoogle Scholar
  28. 28.
    Kumagai K, Tsujikawa A, Muraoka Y, Akagi-Kurashige Y, Murakami T, Miyamoto K, et al. Three-dimensional optical coherence tomography evaluation of vascular changes at arteriovenous crossings. Invest Ophthalmol Vis Sci. 2014;55:1867–75.CrossRefGoogle Scholar
  29. 29.
    Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013;33(5):901–10.CrossRefGoogle Scholar
  30. 30.
    Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1094–101.CrossRefGoogle Scholar
  31. 31.
    Jensen VA. Clinical studies of tributary thrombosis in the central retinal vein. Acta Ophthalmol. 1936;1:1.Google Scholar
  32. 32.
    Klein R, Moss SE, Meuer SM, Klein BE. The 15-year cumulative incidence of retinal vein occlusion: the Beaver Dam eye study. Arch Ophthalmol. 2008;126:513–8.CrossRefGoogle Scholar
  33. 33.
    Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117:313–9.CrossRefGoogle Scholar
  34. 34.
    Seitz R. (Boldi FC, translator). The crossing phenomenon. In: The retinal vessels. CV Mosby, St. Louis; 1964. pp. 20–74.Google Scholar
  35. 35.
    Opremcak EM, Bruce RA. Surgical decompression of branch retinal vein occlusion via arteriovenous crossing sheathotomy: a prospective review of 15 cases. Retina. 1999;19:1–5.CrossRefGoogle Scholar
  36. 36.
    Shah GK, Sharma S, Fineman MS, Federman J, Brown MM, Brown GC. Arteriovenous adventitial sheathotomy for the treatment of macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2000;129:104–6.CrossRefGoogle Scholar
  37. 37.
    Yamamoto S, Saito W, Yagi F, Takeuchi S, Sato E, Mizunoya S. Vitrectomy with or without arteriovenous adventitial sheathotomy for macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2004;138:907–14.CrossRefGoogle Scholar
  38. 38.
    Kumagai K, Furukawa M, Ogino N, Uemura A, Larson E. Long-term outcomes of vitrectomy with or without arteriovenous sheathotomy in branch retinal vein occlusion. Retina. 2007;27:49–54.CrossRefGoogle Scholar
  39. 39.
    Christoffersen NL, Larsen M. Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology. 1999;106:2054–62.CrossRefGoogle Scholar
  40. 40.
    Harino S, Oshima Y, Tsujikawa K, Ogawa K, Grunwald JE. Indocyanine green and fluorescein hyperfluorescence at the site of occlusion in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2001;239:18–24.CrossRefGoogle Scholar
  41. 41.
    Ota M, Tsujikawa A, Murakami T, Kita M, Miyamoto K, Sakamoto A, et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol. 2007;91:1644–9.CrossRefGoogle Scholar
  42. 42.
    Sophie R, Hafiz G, Scott AW, Zimmer-Galler I, Nguyen QD, Ying H, et al. Long-term outcomes in ranibizumab-treated patients with retinal vein occlusion; the role of progression of retinal nonperfusion. Am J Ophthalmol. 2013;156:693–705.CrossRefGoogle Scholar
  43. 43.
    Miyata M, Ooto S, Hata M, Yamashiro K, Tamura H, Akagi-Kurashige Y, et al. Detection of myopic choroidal neovascularization using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:108–14.CrossRefGoogle Scholar
  44. 44.
    Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016;166:76–83.CrossRefGoogle Scholar
  45. 45.
    Sellam A, Glacet-Bernard A, Coscas F, Miere A, Coscas G, Souied EH. Qualitative and quantitative follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF: optical coherence tomography angiography follow-up of retinal vein occlusion. Retina. 2016;28:28.Google Scholar
  46. 46.
    Staurenghi G, Lonati C, Aschero M, Orzalesi N. Arteriovenous crossing as a risk factor in branch retinal vein occlusion. Am J Ophthalmol. 1994;117:211–3.CrossRefGoogle Scholar
  47. 47.
    Kumar B, Yu DY, Morgan WH, Barry CJ, Constable IJ, McAllister IL. The distribution of angioarchitectural changes within the vicinity of the arteriovenous crossing in branch retinal vein occlusion. Ophthalmology. 1998;105:424–7.CrossRefGoogle Scholar
  48. 48.
    Satoh H, Tanaka S, Inazaki H, Sato S, Maruyama-Inoue M, Yamane S, et al. Observation of morphology of arteriovenous crossing in branch retinal vein occlusion using optical coherence tomography, et al. Nihon gankagakkai zasshi (in press).Google Scholar
  49. 49.
    Tanaka T, Muraoka K, Tokui K. Retinal arteriovenous shunt at the arteriovenous crossing. Ophthalmology. 1998;105:1251–8.CrossRefGoogle Scholar
  50. 50.
    Kogo T, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida Y, et al. Fixation status after resolution of macular edema associated with branch retinal vein occlusion. Retina. 2018.  https://doi.org/10.1097/IAE.0000000000002250.Google Scholar

Copyright information

© Japanese Ophthalmological Society 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations