Japanese Journal of Ophthalmology

, Volume 63, Issue 1, pp 7–25 | Cite as

The impact of disc hemorrhage studies on our understanding of glaucoma: a systematic review 50 years after the rediscovery of disc hemorrhage

  • Tetsuya YamamotoEmail author


Purpose of review

To trace the influence of disc hemorrhage studies on our understanding of glaucoma.


Major articles published during the last 50 years since the rediscovery of disc hemorrhage were identified. A total of 196 articles were selected from 435 articles retrieved using the keywords glaucoma and disc hemorrhage as of August 9 2018 from PubMed.

Recent findings

The main characteristics of disc hemorrhage, including its morphology, recurrence rate, duration, increased incidence in glaucoma, and role in the progression of normal tension glaucoma was well understood by the year 2000. Since then, studies have focused on more sophisticated and accurate methods of elucidating both structural and functional progression, with special attention to the role of the lamina cribrosa. Nevertheless, both the mechanism of disc hemorrhage development and its fuller relationship with glaucoma remain unclear.


Disc hemorrhage research requires careful study of glaucomatous optic neuropathy. This has been facilitated by recent advances in optical coherence tomography (OCT) angiography and other OCT technologies. Furthermore, animal studies of disc hemorrhage promise new insights into glaucomatous optic neuropathy.


Disc hemorrhage Glaucoma Normal tension glaucoma Optic nerve head Open angle glaucoma 



The author thanks the editorial board of the Japanese Journal of Ophthalmology for the opportunity to publish this systematic review.

Conflicts of interest

T. Yamamoto, Co-Editor-in-Chief of the Japanese Journal of Ophthalmology, Grant (Alcon Japan, Alcon Pharma, Otsuka, Pfizer, Santen, Senju), Consultant/Advisor (Alcon Japan, Alcon Pharma, Astellas Pharma, Glaukos Japan, Inotek, Kowa, Otsuka, Pfizer, pH Pharma, Rohto, Santen, Seed, Senju), Lecture fees (Alcon Japan, Alcon Pharma, AMO Japan, CREWT Medical Systems, Glaukos Japan, Johnson & Johnson, Kowa, Novartis, Otsuka, Pfizer, Santen, Senju).


  1. 1.
    Jaeger E. Über Glaucom [in German]. Ztschr Ges Aerzte Wien. 1858;14:465–74.Google Scholar
  2. 2.
    Blanchard DL. Jaeger, about glaucoma. Doc Ophthalmol. 1995;89:185–91.Google Scholar
  3. 3.
    Bjerrum JP. Om en teillfojelse til den saedvanliga synsfeltsundersogelse samt om synsfelt ved glaukom [in Danish]. Nord Ophthalmol Tidskr (Copenh). 1889;2:141–85.Google Scholar
  4. 4.
    Feldman F, Sweeney VP, Drance SM. Cerebro-vascular studies in chronic simple glaucoma. Can J Ophthalmol. 1969;4:358–64.Google Scholar
  5. 5.
    Drance SM, Begg IS. Sector haemorrhage: a probable acute ischaemic disc change in chronic simple glaucoma. Can J Ophthalmol. 1970;5:137–41.Google Scholar
  6. 6.
    Begg IS, Drance SM, Sweeney VP. Ischaemic optic neuropathy in chronic simple glaucoma. Br J Ophthalmol. 1971;55:73–90.Google Scholar
  7. 7.
    Drance SM. Some factors in the production of low tension glaucoma. Br J Ophthalmol. 1972;56:229–42.Google Scholar
  8. 8.
    Kottler MS, Drance SM. Studies of hemorrhage on the optic disc. Can J Ophthalmol. 1976;11:102–5.Google Scholar
  9. 9.
    Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81:761–7.Google Scholar
  10. 10.
    Drance SM, Fairclough M, Butler DM, Kottler MS. The importance of disc hemorrhage in the prognosis of chronic open angle glaucoma. Arch Ophthalmol. 1977;95:226–8.Google Scholar
  11. 11.
    Susanna R, Drance SM, Douglas GR. The visual prognosis of the fellow eye in uniocular chronic open-angle glaucoma. Br J Ophthalmol. 1978;62:327–9.Google Scholar
  12. 12.
    Bengtsson B, Holmin C, Krakau CE. Disc haemorrhage and glaucoma. Acta Ophthalmol (Copenh). 1981;59:1–14.Google Scholar
  13. 13.
    Airaksinen PJ. Fellow eyes of glaucomatous patients with uniocular optic disc haemorrhage. Acta Ophthalmol (Copenh). 1981;59:231–6.Google Scholar
  14. 14.
    Bengtsson B. Manifest glaucoma in the aged II: cases detected by ophthalmoscopy. Acta Ophthalmol (Copenh). 1981;59:332–5.Google Scholar
  15. 15.
    Gloster J. Incidence of optic disc haemorrhages in chronic simple glaucoma and ocular hypertension. Br J Ophthalmol. 1981;65:452–6.Google Scholar
  16. 16.
    Airaksinen PJ, Mustonen E, Alanko HI. Optic disc hemorrhages: analysis of stereophotographs and clinical data of 112 patients. Arch Ophthalmol. 1981;99:1795–801.Google Scholar
  17. 17.
    Airaksinen PJ, Mustonen E, Alanko HI. Optic disc haemorrhages precede retinal nerve fibre layer defects in ocular hypertension. Acta Ophthalmol (Copenh). 1981;59:627–41.Google Scholar
  18. 18.
    Shihab ZM, Lee PF, Hay P. The significance of disc hemorrhage in open-angle glaucoma. Ophthalmology. 1982;89:211–3.Google Scholar
  19. 19.
    Airaksinen PJ, Heijl A. Visual field and retinal nerve fibre layer in early glaucoma after optic disc haemorrhage. Acta Ophthalmol (Copenh). 1983;61:186–94.Google Scholar
  20. 20.
    Airaksinen PJ, Alanko HI. Effect of retinal nerve fibre loss on the optic nerve head configuration in early glaucoma. Graefes Arch Clin Exp Ophthalmol. 1983;220:193–6.Google Scholar
  21. 21.
    Airaksinen PJ. Are optic disc haemorrhages a common finding in all glaucoma patients? Acta Ophthalmol (Copenh). 1984;62:193–6.Google Scholar
  22. 22.
    Bengtsson B. Chronic glaucoma and symptomatic vitreous detachment. Acta Ophthalmol (Copenh). 1986;64:152–6.Google Scholar
  23. 23.
    Kitazawa Y, Shirato S, Yamamoto T. Optic disc hemorrhage in low-tension glaucoma. Ophthalmology. 1986;93:853–7.Google Scholar
  24. 24.
    Heijl A. Frequent disc photography and computerized perimetry in eyes with optic disc haemorrhage: a pilot study. Acta Ophthalmol (Copenh). 1986;64:274–81.Google Scholar
  25. 25.
    Sonnsjö B. Glaucomatous disc haemorrhages photographed at short intervals. Acta Ophthalmol (Copenh). 1986;64:263–6.Google Scholar
  26. 26.
    Poinoosawmy D, Gloster J, Nagasubramanian S, Hitchings RA. Association between optic disc haemorrhages in glaucoma and abnormal glucose tolerance. Br J Ophthalmol. 1986;70:599–602.Google Scholar
  27. 27.
    Miller KM, Quigley HA. Comparison of optic disc features in low-tension and typical open-angle glaucoma. Ophthalmic Surg. 1987;18:882–9.Google Scholar
  28. 28.
    Sonnsjö B, Krakau CE, Bengtsson B. Disc haemorrhages and glaucoma in a general ophthalmic practice. Acta Ophthalmol (Copenh). 1988;66:174–9.Google Scholar
  29. 29.
    Bengtsson B. Characteristics of manifest glaucoma at early stages. Graefes Arch Clin Exp Ophthalmol. 1989;227:241–3.Google Scholar
  30. 30.
    Diehl DL, Quigley HA, Miller NR, Sommer A, Burney EN. Prevalence and significance of optic disc hemorrhage in a longitudinal study of glaucoma. Arch Ophthalmol. 1990;108:545–50.Google Scholar
  31. 31.
    Bengtsson B. Optic disc haemorrhages preceding manifest glaucoma. Acta Ophthalmol (Copenh). 1990;68:450–4.Google Scholar
  32. 32.
    Tuulonen A, Airaksinen PJ, Montagna A, Nieminen H. Screening for glaucoma with a non-mydriatic fundus camera. Acta Ophthalmol (Copenh). 1990;68:445–9.Google Scholar
  33. 33.
    Geijssen HC, Greve EL. Focal ischaemic normal pressure glaucoma versus high pressure glaucoma. Doc Ophthalmol. 1990;75:291–301.Google Scholar
  34. 34.
    Sonnsjö B, Holmin C, Krakau CE. Occurrence of disc haemorrhages in open-angle glaucoma treated with pilocarpine or timolol. Acta Ophthalmol (Copenh). 1991;69:217–24.Google Scholar
  35. 35.
    Hoyng PF, de Jong N, Oosting H, Stilma J. Platelet aggregation, disc haemorrhage and progressive loss of visual fields in glaucoma: a seven year follow-up study on glaucoma. Int Ophthalmol. 1992;16:65–73.Google Scholar
  36. 36.
    Sonnsjö B. Similarities between disc haemorrhages and thromboses of the retinal veins. Int Ophthalmol. 1992;16:235–8.Google Scholar
  37. 37.
    Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, et al. Prevalence of glaucoma: the Beaver Dam Eye Study. Ophthalmology. 1992;99:1499–504.Google Scholar
  38. 38.
    Susanna R, Basseto FL. Hemorrhage of the optic disc and neurosensorial dysacousia. J Glaucoma. 1992;1:248–53.Google Scholar
  39. 39.
    Jonas JB, Schiro D. Localised wedge shaped defects of the retinal nerve fibre layer in glaucoma. Br J Ophthalmol. 1994;78:285–90.Google Scholar
  40. 40.
    Hendrickx KH, van den Enden A, Rasker MT, Hoyng PF. Cumulative incidence of patients with disc hemorrhages in glaucoma and the effect of therapy. Ophthalmology. 1994;101:1165–72.Google Scholar
  41. 41.
    Siegner SW, Netland PA. Optic disc hemorrhages and progression of glaucoma. Ophthalmology. 1996;103:1014–24.Google Scholar
  42. 42.
    Graham SL, Goldberg I, Murray B, Beaumont P, Chong BH. Activated protein C resistance: low incidence in glaucomatous optic disc haemorrhage and central retinal vein occlusion. Aust N Z J Ophthalmol. 1996;24:199–205.Google Scholar
  43. 43.
    Meyer JH, Brandi-Dohrn J, Funk J. Twenty four hour blood pressure monitoring in normal tension glaucoma. Br J Ophthalmol. 1996;80:864–7.Google Scholar
  44. 44.
    Tezel G, Kass MA, Kolker AE, Wax MB. Comparative optic disc analysis in normal pressure glaucoma, primary open-angle glaucoma, and ocular hypertension. Ophthalmology. 1996;103:2105–13.Google Scholar
  45. 45.
    Barry CJ, Cooper RL, Eikelboom RH. Optic disc haemorrhages and vascular abnormalities in a glaucoma population. Aust N Z J Ophthalmol. 1997;25:137–44.Google Scholar
  46. 46.
    Rasker MT, van den Enden A, Bakker D, Hoyng PF. Deterioration of visual fields in patients with glaucoma with and without optic disc hemorrhages. Arch Ophthalmol. 1997;115:1257–62.Google Scholar
  47. 47.
    Sugiyama K, Tomita G, Kitazawa Y, Onda E, Shinohara H, Park KH. The associations of optic disc hemorrhage with retinal nerve fiber layer defect and peripapillary atrophy in normal-tension glaucoma. Ophthalmology. 1997;104:1926–33.Google Scholar
  48. 48.
    Healey PR, Mitchell P, Smith W, Wang JJ. Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology. 1998;105:216–23.Google Scholar
  49. 49.
    Oguri A, Sogano S, Yamamoto T, Kitazawa Y. Incidence of elevation of intraocular pressure over time and associated factors in normal-tension glaucoma. J Glaucoma. 1998;7:117–20.Google Scholar
  50. 50.
    Daugeliene L, Yamamoto T, Kitazawa Y. Effect of trabeculectomy on visual field in progressive normal-tension glaucoma. Jpn J Ophthalmol. 1998;42:286–92.Google Scholar
  51. 51.
    Jonas JB, Dichtl A, Budde WM, Lang P. Optic disc morphology in pigmentary glaucoma. Br J Ophthalmol. 1998;82:875–9.Google Scholar
  52. 52.
    Hayakawa T, Sugiyama K, Tomita G, Kawase K, Onda E, Shinohara H, et al. Correlation of the peripapillary atrophy area with optic disc cupping and disc hemorrhage. J Glaucoma. 1998;7:306–11.Google Scholar
  53. 53.
    Ishida K, Yamamoto T, Kitazawa Y. Clinical factors associated with progression of normal-tension glaucoma. J Glaucoma. 1998;7:372–7.Google Scholar
  54. 54.
    Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 1999;237:105–8.Google Scholar
  55. 55.
    Sugiyama K, Tomita G, Kawase K, Onda E, Shinohara H, Hayakawa T, et al. Disc hemorrhage and peripapillary atrophy in apparently healthy subjects. Acta Ophthalmol Scand. 1999;77:139–42.Google Scholar
  56. 56.
    Sugiyama K, Uchida H, Tomita G, Sato Y, Iwase A, Kitazawa Y. Localized wedge-shaped defects of retinal nerve fiber layer and disc hemorrhage in glaucoma. Ophthalmology. 1999;106:1762–7.Google Scholar
  57. 57.
    Jonas JB, Budde WM. Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma. Ophthalmology. 2000;107:704–11.Google Scholar
  58. 58.
    Oguri A, Yamamoto T, Kitazawa Y. Spontaneous intraocular pressure reduction in normal-tension glaucoma and associated clinical factors. Jpn J Ophthalmol. 2000;44:263–7.Google Scholar
  59. 59.
    Ishida K, Yamamoto T, Sugiyama K, Kitazawa Y. Disk hemorrhage is a significantly negative prognostic factor in normal-tension glaucoma. Am J Ophthalmol. 2000;129:707–14.Google Scholar
  60. 60.
    Sugiyama T, Hara H, Oku H, Nakatsuji S, Okuno T, Sasaoka M, et al. Optic cup enlargement followed by reduced optic nerve head circulation after optic nerve stimulation. Invest Ophthalmol Vis Sci. 2001;42:2843–8.Google Scholar
  61. 61.
    Sonnsjö B, Dokmo Y, Krakau T. Disc haemorrhages, precursors of open angle glaucoma. Prog Retin Eye Res. 2002;21:35–56.Google Scholar
  62. 62.
    Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55:3067–73.Google Scholar
  63. 63.
    Chung E, Demetriades AM, Christos PJ, Radcliffe NM. Structural glaucomatous progression before and after occurrence of an optic disc haemorrhage. Br J Ophthalmol. 2015;99:21–5.Google Scholar
  64. 64.
    Park HY, Jeong HJ, Kim YH, Park CK. Optic disc hemorrhage is related to various hemodynamic findings by disc angiography. PLoS One. 2015;10:e0120000.Google Scholar
  65. 65.
    Kim KE, Kim DM, Flammer J, Kim KN. Central retinal venous pressure in eyes of normal-tension glaucoma patients with optic disc hemorrhage. PLoS One. 2015;10:e0127920.Google Scholar
  66. 66.
    Zhang L, Albon J, Jones H, Gouget CL, Ethier CR, Goh JC, et al. Collagen microstructural factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2015;56:2031–42.Google Scholar
  67. 67.
    Lee NY, Park HY, Park SH, Park CK. The association of nailfold capillaroscopy with systemic matrix metalloproteinase-9 concentration in normal-tension glaucoma. Curr Eye Res. 2015;40:1001–7.Google Scholar
  68. 68.
    Kosior-Jarecka E, Bartosińska J, Łukasik U, Wróbel-Dudzińska D, Krasowska D, Chodorowska G, et al. Results of nailfold capillaroscopy in patients with normal-tension glaucoma. Curr Eye Res. 2018;43:747–53.Google Scholar
  69. 69.
    Shim SH, Kim JM, Woo HY, Shin KU, Koh JW, Park KH. Association between platelet function and disc hemorrhage in patients with normal-tension glaucoma: a prospective cross-sectional study. Am J Ophthalmol. 2015;160:1191–9.Google Scholar
  70. 70.
    Lorenz K, Beck S, Keilani MM, Wasielica-Poslednik J, Pfeiffer N, Grus FH. Longitudinal analysis of serum autoantibody-reactivities in patients with primary open angle glaucoma and optic disc hemorrhage. PLoS One. 2016;11:e0166813.Google Scholar
  71. 71.
    Lee EJ, Han JC, Kee C. A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage. Prog Retin Eye Res. 2017;60:20–43.Google Scholar
  72. 72.
    Chou JC, Cousins CC, Miller JB, Song BJ, Shen LQ, Kass MA, et al. Fundus densitometry findings suggest optic disc hemorrhages in primary open-angle glaucoma have an arterial origin. Am J Ophthalmol. 2018;187:108–16.Google Scholar
  73. 73.
    Gazzard G, Morgan W, Devereux J, Foster P, Oen F, Seah S, et al. Optic disc hemorrhage in Asian glaucoma patients. J Glaucoma. 2003;12:226–31.Google Scholar
  74. 74.
    Krupin T, Liebmann JM, Greenfield DS, Rosenberg LF, Ritch R, Yang JW. The Low-pressure Glaucoma Treatment Study (LoGTS) study design and baseline characteristics of enrolled patients. Ophthalmology. 2005;112:376–85.Google Scholar
  75. 75.
    Lan YW, Wang IJ, Hsiao YC, Sun FJ, Hsieh JW. Characteristics of disc hemorrhage in primary angle-closure glaucoma. Ophthalmology. 2008;115:1328–33.Google Scholar
  76. 76.
    Bengtsson B, Leske MC, Yang Z, Heijl A. Disc hemorrhages and treatment in the early manifest glaucoma trial. Ophthalmology. 2008;115:2044–8.Google Scholar
  77. 77.
    Tomidokoro A, Iwase A, Araie M, Yamamoto T, Kitazawa Y. Population-based prevalence of optic disc haemorrhages in elderly Japanese. Eye (Lond). 2009;23:1032–7.Google Scholar
  78. 78.
    Hsieh JW, Lan YW, Wang IJ, Sun FJ. Clinical characteristics and prognostic significance of disc hemorrhage in open-angle and angle-closure glaucoma. J Glaucoma. 2010;19:483–7.Google Scholar
  79. 79.
    Suh MH, Park KH. Period prevalence and incidence of optic disc haemorrhage in normal tension glaucoma and primary open-angle glaucoma. Clin Exp Ophthalmol. 2011;39:513–9.Google Scholar
  80. 80.
    Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011;118:1782–9.Google Scholar
  81. 81.
    Kang JW, Park B, Cho BJ. Comparison of risk factors for initial central scotoma versus initial peripheral scotoma in normal-tension glaucoma. Korean J Ophthalmol. 2015;29:102–8.Google Scholar
  82. 82.
    Schor KS, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Rates of visual field progression in distinct optic disc phenotypes. Clin Exp Ophthalmol. 2012;40:706–12.Google Scholar
  83. 83.
    Kim JM, Jeoung JW, Bitrian E, Supawavej C, Mock D, Park KH, et al. Comparison of clinical characteristics between Korean and Western normal-tension glaucoma patients. Am J Ophthalmol. 2013;155:852–7.Google Scholar
  84. 84.
    Jonas JB, Nangia V, Khare A, Kulkarni M, Matin A, Sinha A, et al. Prevalence of optic disc hemorrhages in rural central India: the Central Indian Eye and Medical Study. PLoS One. 2013;8:e76154.Google Scholar
  85. 85.
    Park HS, Yoo C, Kim JM, Sung KC, Shim SH, Bae JH, et al. Disc hemorrhages and their risk factors in an urban South Korean population. Optom Vis Sci. 2015;92:700–6.Google Scholar
  86. 86.
    Kim DW, Kim YK, Jeoung JW, Kim DM, Park KH. Prevalence of optic disc hemorrhage in Korea: the Korea National Health and Nutrition Examination Survey. Invest Ophthalmol Vis Sci. 2015;56:3666–72.Google Scholar
  87. 87.
    Cho HK, Suh W, Kee C. Visual and structural prognosis of the untreated fellow eyes of unilateral normal tension glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2015;253:1547–55.Google Scholar
  88. 88.
    Skaat A, De Moraes CG, Bowd C, Sample PA, Girkin CA, Medeiros FA, et al. African Descent and Glaucoma Evaluation Study (ADAGES): racial differences in optic disc hemorrhage and beta-zone parapapillary atrophy. Ophthalmology. 2016;123:1476–83.Google Scholar
  89. 89.
    Budenz DL, Huecker JB, Gedde SJ, Gordon M, Kass M. Thirteen-year follow-up of optic disc hemorrhages in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2017;174:126–33.Google Scholar
  90. 90.
    Miyake T, Sawada A, Yamamoto T, Miyake K, Sugiyama K, Kitazawa Y. Incidence of disc hemorrhages in open-angle glaucoma before and after trabeculectomy. J Glaucoma. 2006;15:164–71.Google Scholar
  91. 91.
    Liou SY, Sugiyama K, Uchida H, Gu ZB, Yamamoto T, Tomita G, et al. Morphometric characteristics of optic disk with disk hemorrhage in normal-tension glaucoma. Am J Ophthalmol. 2001;132:618–25.Google Scholar
  92. 92.
    Jonas JB, Martus P, Budde WM, Hayler J. Morphologic predictive factors for development of optic disc hemorrhages in glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2956–61.Google Scholar
  93. 93.
    Jonas JB, Martus P, Budde WM. Inter-eye differences in chronic open-angle glaucoma patients with unilateral disc hemorrhages. Ophthalmology. 2002;109:2078–83.Google Scholar
  94. 94.
    Ahn JK, Kang JH, Park KH. Correlation between a disc hemorrhage and peripapillary atrophy in glaucoma patients with a unilateral disc hemorrhage. J Glaucoma. 2004;13:9–14.Google Scholar
  95. 95.
    Yamamoto T, Iwase A, Kawase K, Sawada A, Ishida K. Optic disc hemorrhages detected in a large-scale eye disease screening project. J Glaucoma. 2004;13:356–60.Google Scholar
  96. 96.
    Radcliffe NM, Liebmann JM, Rozenbaum I, Sbeity Z, Sandler SF, Tello C, et al. Anatomic relationships between disc hemorrhage and parapapillary atrophy. Am J Ophthalmol. 2008;146:735–40.Google Scholar
  97. 97.
    Jeoung JW, Park KH, Kim JM, Kang SH, Kang JH, Kim TW, et al. Optic disc hemorrhage may be associated with retinal nerve fiber loss in otherwise normal eyes. Ophthalmology. 2008;115:2132–40.Google Scholar
  98. 98.
    Kim HS, Park KH, Jeoung JW, Park J. Comparison of myopic and nonmyopic disc hemorrhage in primary open-angle glaucoma. Jpn J Ophthalmol. 2013;57:166–71.Google Scholar
  99. 99.
    Kim YK, Park KH, Yoo BW, Kim HC. Topographic characteristics of optic disc hemorrhage in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2014;55:169–76.Google Scholar
  100. 100.
    Kim EK, Park HL, Park CK. Relationship between retinal inner nuclear layer thickness and severity of visual field loss in glaucoma. Sci Rep. 2017;7:5543.Google Scholar
  101. 101.
    Ozturker ZK, Munro K, Gupta N. Optic disc hemorrhages in glaucoma and common clinical features. Can J Ophthalmol. 2017;52:583–91.Google Scholar
  102. 102.
    Grødum K, Heijl A, Bengtsson B. Optic disc hemorrhages and generalized vascular disease. J Glaucoma. 2002;11:226–30.Google Scholar
  103. 103.
    Soares AS, Artes PH, Andreou P, Leblanc RP, Chauhan BC, Nicolela MT. Factors associated with optic disc hemorrhages in glaucoma. Ophthalmology. 2004;111:1653–7.Google Scholar
  104. 104.
    Kim YD, Han SB, Park KH, Kim SH, Kim SJ, Seong M, et al. Risk factors associated with optic disc haemorrhage in patients with normal tension glaucoma. Eye (Lond). 2010;24:567–72.Google Scholar
  105. 105.
    Furlanetto RL, De Moraes CG, Teng CC, Liebmann JM, Greenfield DS, Gardiner SK, et al. Risk factors for optic disc hemorrhage in the low-pressure glaucoma treatment study. Am J Ophthalmol. 2014;157:945–52.Google Scholar
  106. 106.
    Kwon J, Lee J, Choi J, Jeong D, Kook MS. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am J Ophthalmol. 2017;176:87–101.Google Scholar
  107. 107.
    Jeoung JW, Kim DM, Oh S, Lee JS, Park SS, Kim JY. The relation between endothelial nitric oxide synthase polymorphisms and normal tension glaucoma. J Glaucoma. 2017;26:1030–5.Google Scholar
  108. 108.
    Budde WM, Mardin CY, Jonas JB. Glaucomatous optic disc hemorrhages on confocal scanning laser tomographic images. J Glaucoma. 2003;12:470–4.Google Scholar
  109. 109.
    O’Brien PD, Bogdan AJ, Fitzpatrick P, Beatty S. The influence of pharmacological mydriasis on biomicroscopic evaluation of the glaucomatous optic nerve head. Eye (Lond). 2005;19:1194–9.Google Scholar
  110. 110.
    Kong YX, Coote MA, O’Neill EC, Gurria LU, Xie J, Garway-Heath D, et al. Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination. Clin Exp Ophthalmol. 2011;39:308–17.Google Scholar
  111. 111.
    Syed ZA, Radcliffe NM, De Moraes CG, Smith SD, Liebmann JM, Ritch R. Automated alternation flicker for the detection of optic disc haemorrhages. Acta Ophthalmol. 2012;90:645–50.Google Scholar
  112. 112.
    Lee JR, Sung KR, Na JH, Shon K, Lee KS. Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression. Jpn J Ophthalmol. 2013;57:546–52.Google Scholar
  113. 113.
    O’Neill EC, Gurria LU, Pandav SS, Kong YX, Brennan JF, Xie J, et al. Glaucomatous optic neuropathy evaluation project: factors associated with underestimation of glaucoma likelihood. JAMA Ophthalmol. 2014;132:560–6.Google Scholar
  114. 114.
    Sandhu S, Rudnisky C, Arora S, Kassam F, Douglas G, Edwards MC, et al. Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features. Br J Ophthalmol. 2018;102:364–8.Google Scholar
  115. 115.
    Healey PR, Mitchell P. The prevalence of optic disc pits and their relationship to glaucoma. J Glaucoma. 2008;17:11–4.Google Scholar
  116. 116.
    Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119:10–20.Google Scholar
  117. 117.
    Takayama K, Hangai M, Kimura Y, Morooka S, Nukada M, Akagi T, et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:4798–807.Google Scholar
  118. 118.
    Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, et al. Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci. 2013;54:8401–7.Google Scholar
  119. 119.
    Lee EJ, Kim TW, Kim M, Girard MJ, Mari JM, Weinreb RN. Recent structural alteration of the peripheral lamina cribrosa near the location of disc hemorrhage in glaucoma. Invest Ophthalmol Vis Sci. 2014;55:2805–15.Google Scholar
  120. 120.
    Faridi OS, Park SC, Kabadi R, Su D, De Moraes CG, Liebmann JM, et al. Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Ophthalmology. 2014;121:1524–30.Google Scholar
  121. 121.
    Choi YJ, Lee EJ, Kim BH, Kim TW. Microstructure of the optic disc pit in open-angle glaucoma. Ophthalmology. 2014;121:2098–106.Google Scholar
  122. 122.
    Kim YK, Jeoung JW, Park KH. Effect of focal lamina cribrosa defect on disc hemorrhage area in glaucoma. Invest Ophthalmol Vis Sci. 2016;57:899–907.Google Scholar
  123. 123.
    Sharpe GP, Danthurebandara VM, Vianna JR, Alotaibi N, Hutchison DM, Belliveau AC, et al. Optic disc hemorrhages and laminar disinsertions in glaucoma. Ophthalmology. 2016;123:1949–56.Google Scholar
  124. 124.
    Kim YK, Park KH. Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage. Acta Ophthalmol. 2016;94:e468–73.Google Scholar
  125. 125.
    Park HL, Lee J, Jung Y, Park CK. Optic disc hemorrhage and lamina cribrosa defects in glaucoma progression. Sci Rep. 2017;7:3489.Google Scholar
  126. 126.
    Choi F, Park KH, Kim DM, Kim TW. Retinal nerve fiber layer thickness evaluation using optical coherence tomography in eyes with optic disc hemorrhage. Ophthalmic Surg Lasers Imaging. 2007;38:118–25.Google Scholar
  127. 127.
    Nitta K, Sugiyama K, Higashide T, Ohkubo S, Tanahashi T, Kitazawa Y. Does the enlargement of retinal nerve fiber layer defects relate to disc hemorrhage or progressive visual field loss in normal-tension glaucoma? J Glaucoma. 2011;20:189–95.Google Scholar
  128. 128.
    Kernstock C, Dietzsch J, Januschowski K, Schiefer U, Fischer MD. Optical coherence tomography shows progressive local nerve fiber loss after disc hemorrhages in glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2012;250:583–7.Google Scholar
  129. 129.
    Wang YX, Hu LN, Yang H, Jonas JB, Xu L. Frequency and associated factors of structural progression of open-angle glaucoma in the Beijing Eye Study. Br J Ophthalmol. 2012;96:811–5.Google Scholar
  130. 130.
    Niles PI, Greenfield DS, Sehi M, Bhardwaj N, Iverson SM, Chung YS. Detection of progressive macular thickness loss using optical coherence tomography in glaucoma suspect and glaucomatous eyes. Eye (Lond). 2012;26:983–91.Google Scholar
  131. 131.
    Suh MH, Park KH, Kim H, Kim TW, Kim SW, Kim SY, et al. Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography. J Glaucoma. 2012;21:358–66.Google Scholar
  132. 132.
    Radcliffe NM, Smith SD, Syed ZA, Park SC, Ehrlich JR, De Moraes CG, et al. Retinal blood vessel positional shifts and glaucoma progression. Ophthalmology. 2014;121:842–8.Google Scholar
  133. 133.
    Hwang YH, Kim YY, Kim HK, Sohn YH. Changes in retinal nerve fiber layer thickness after optic disc hemorrhage in glaucomatous eyes. J Glaucoma. 2014;23:547–52.Google Scholar
  134. 134.
    Lee SH, Lee EJ, Kim TW. Structural characteristics of the acquired optic disc pit and the rate of progressive retinal nerve fiber layer thinning in primary open-angle glaucoma. JAMA Ophthalmol. 2015;133:1151–8.Google Scholar
  135. 135.
    Akagi T, Zangwill LM, Saunders LJ, Yarmohammadi A, Manalastas PIC, Suh MH, et al. Rates of local retinal nerve fiber layer thinning before and after disc hemorrhage in glaucoma. Ophthalmology. 2017;124:1403–11.Google Scholar
  136. 136.
    Lee WJ, Kim YK, Park KH, Jeoung JW. Evaluation of ganglion cell-inner plexiform layer thinning in eyes with optic disc hemorrhage: a trend-based progression analysis. Invest Ophthalmol Vis Sci. 2017;58:6449–56.Google Scholar
  137. 137.
    Lee EJ, Han JC, Kee C. Location of disc hemorrhage and direction of progression in glaucomatous retinal nerve fiber layer defects. J Glaucoma. 2018;27:504–10.Google Scholar
  138. 138.
    Pereira ML, Kim CS, Zimmerman MB, Alward WL, Hayreh SS, Kwon YH. Rate and pattern of visual field decline in primary open-angle glaucoma. Ophthalmology. 2002;109:2232–40.Google Scholar
  139. 139.
    Kono Y, Sugiyama K, Ishida K, Yamamoto T, Kitazawa Y. Characteristics of visual field progression in patients with normal-tension glaucoma with optic disk hemorrhages. Am J Ophthalmol. 2003;135:499–503.Google Scholar
  140. 140.
    Leung DY, Tham CC, Li FC, Kwong YY, Chi SC, Lam DS. Silent cerebral infarct and visual field progression in newly diagnosed normal-tension glaucoma: a cohort study. Ophthalmology. 2009;116:1250–6.Google Scholar
  141. 141.
    De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, Liebmann JM. Spatially consistent, localized visual field loss before and after disc hemorrhage. Invest Ophthalmol Vis Sci. 2009;50:4727–33.Google Scholar
  142. 142.
    Leung DY, Li FC, Kwong YY, Tham CC, Chi SC, Lam DS. Simvastatin and disease stabilization in normal tension glaucoma: a cohort study. Ophthalmology. 2010;117:471–6.Google Scholar
  143. 143.
    de Beaufort HC, De Moraes CG, Teng CC, Prata TS, Tello C, Ritch R, et al. Recurrent disc hemorrhage does not increase the rate of visual field progression. Graefes Arch Clin Exp Ophthalmol. 2010;248:839–44.Google Scholar
  144. 144.
    Medeiros FA, Alencar LM, Sample PA, Zangwill LM, Susanna R Jr, Weinreb RN. The relationship between intraocular pressure reduction and rates of progressive visual field loss in eyes with optic disc hemorrhage. Ophthalmology. 2010;117:2061–6.Google Scholar
  145. 145.
    De Moraes CG, Juthani VJ, Liebmann JM, Teng CC, Tello C, Susanna R Jr, et al. Risk factors for visual field progression in treated glaucoma. Arch Ophthalmol. 2011;129:562–8.Google Scholar
  146. 146.
    Graham SL, Butlin M, Lee M, Avolio AP. Central blood pressure, arterial waveform analysis, and vascular risk factors in glaucoma. J Glaucoma. 2013;22:98–103.Google Scholar
  147. 147.
    Sakata R, Aihara M, Murata H, Mayama C, Tomidokoro A, Iwase A, et al. Contributing factors for progression of visual field loss in normal-tension glaucoma patients with medical treatment. J Glaucoma. 2013;22:250–4.Google Scholar
  148. 148.
    Hayamizu F, Yamazaki Y, Nakagami T, Mizuki K. Optic disc size and progression of visual field damage in patients with normal-tension glaucoma. Clin Ophthalmol. 2013;7:807–13.Google Scholar
  149. 149.
    Lee J, Kong M, Kim J, Kee C. Comparison of visual field progression between relatively low and high intraocular pressure groups in normal tension glaucoma patients. J Glaucoma. 2014;23:553–60.Google Scholar
  150. 150.
    Kim JM, Kyung H, Azarbod P, Lee JM, Caprioli J. Disc haemorrhage is associated with the fast component, but not the slow component, of visual field decay rate in glaucoma. Br J Ophthalmol. 2014;98:1555–9.Google Scholar
  151. 151.
    Komori S, Ishida K, Yamamoto T. Results of long-term monitoring of normal-tension glaucoma patients receiving medical therapy: results of an 18-year follow-up. Graefes Arch Clin Exp Ophthalmol. 2014;252:1963–70.Google Scholar
  152. 152.
    Park HY, Kim EK, Park CK. Clinical significance of the location of recurrent optic disc hemorrhage in glaucoma. Invest Ophthalmol Vis Sci. 2015;56:7524–34.Google Scholar
  153. 153.
    Park HY, Hong KE, Park CK. Impact of age and myopia on the rate of visual field progression in glaucoma patients. Medicine (Baltimore). 2016;95:e3500.Google Scholar
  154. 154.
    Sung MS, Kang YS, Heo H, Park SW. Optic disc rotation as a clue for predicting visual field progression in myopic normal-tension glaucoma. Ophthalmology. 2016;123:1484–93.Google Scholar
  155. 155.
    Kim S, Sung KR. Factors associated with loss of visual function in medically treated advanced normal tension glaucoma. Curr Eye Res. 2017;42:429–35.Google Scholar
  156. 156.
    Kim HJ, Song YJ, Kim YK, Jeoung JW, Park KH. Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma. Jpn J Ophthalmol. 2017;61:307–13.Google Scholar
  157. 157.
    Lee NY, Kim MH, Park CK. Visual field progression is associated with systemic concentration of macrophage chemoattractant protein-1 in normal-tension glaucoma. Curr Eye Res. 2017;42:1002–6.Google Scholar
  158. 158.
    Chan TCW, Bala C, Siu A, Wan F, White A. Risk factors for rapid glaucoma disease progression. Am J Ophthalmol. 2017;180:151–7.Google Scholar
  159. 159.
    Jin SW, Noh SY. Long-term clinical course of normal-tension glaucoma: 20 years of experience. J Ophthalmol. 2017;2017:2651645.Google Scholar
  160. 160.
    Sawada A, Manabe Y, Yamamoto T, Nagata C. Long-term clinical course of normotensive preperimetric glaucoma. Br J Ophthalmol. 2017;101:1649–53.Google Scholar
  161. 161.
    Dias DT, Almeida I, Sassaki AM, Juncal VR, Ushida M, Lopes FS, et al. Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages. Eye (Lond). 2018;32:1669–74. Scholar
  162. 162.
    Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Factors for glaucoma progression and the effect of treatment: the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2003;121:48–56.Google Scholar
  163. 163.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the Early Manifest Glaucoma Trial. Ophthalmology. 2007;114:1965–72.Google Scholar
  164. 164.
    Kim SH, Park KH. The relationship between recurrent optic disc hemorrhage and glaucoma progression. Ophthalmology. 2006;113:598–602.Google Scholar
  165. 165.
    Keltner JL, Johnson CA, Anderson DR, Levine RA, Fan J, Cello KE, et al. The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology. 2006;113:1603–12.Google Scholar
  166. 166.
    Budenz DL, Anderson DR, Feuer WJ, Beiser JA, Schiffman J, Parrish RK 2nd, et al. Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study. Ophthalmology. 2006;113:2137–43.Google Scholar
  167. 167.
    Hsieh JW, Lan YW. Progression of optic neuropathy after disc hemorrhage in primary angle-closure glaucoma. Jpn J Ophthalmol. 2009;53:380–3.Google Scholar
  168. 168.
    Holló G, Quaranta L, Cvenkel B, Astakhov YS, Teus MA, Kóthy P, et al. Risk factors associated with progression in exfoliative glaucoma patients. Ophthalmic Res. 2012;47:208–13.Google Scholar
  169. 169.
    Araie M, Shirato S, Yamazaki Y, Matsumoto C, Kitazawa Y, Ohashi Y. Risk factors for progression of normal-tension glaucoma under β-blocker monotherapy. Acta Ophthalmol. 2012;90:e337–43.Google Scholar
  170. 170.
    De Moraes CG, Liebmann JM, Park SC, Teng CC, Nemiroff J, Tello C, et al. Optic disc progression and rates of visual field change in treated glaucoma. Acta Ophthalmol. 2013;91:e86–91.Google Scholar
  171. 171.
    Kim M, Kim DM, Park KH, Kim TW, Jeoung JW, Kim SH. Intraocular pressure reduction with topical medications and progression of normal-tension glaucoma: a 12-year mean follow-up study. Acta Ophthalmol. 2013;91:e270–5.Google Scholar
  172. 172.
    Jeong JH, Park KH, Jeoung JW, Kim DM. Preperimetric normal tension glaucoma study: long-term clinical course and effect of therapeutic lowering of intraocular pressure. Acta Ophthalmol. 2014;92:e185–93.Google Scholar
  173. 173.
    Gracitelli CP, Tatham AJ, Zangwill LM, Weinreb RN, Liu T, Medeiros FA. Estimated rates of retinal ganglion cell loss in glaucomatous eyes with and without optic disc hemorrhages. PLoS One. 2014;9:e105611.Google Scholar
  174. 174.
    Kim KE, Jeoung JW, Kim DM, Ahn SJ, Park KH, Kim SH. Long-term follow-up in preperimetric open-angle glaucoma: progression rates and associated factors. Am J Ophthalmol. 2015;159:160–8.Google Scholar
  175. 175.
    Erdem E, Williams A, Kuchar SD, Waisbourd M, Spaeth GL. Long-term (>8 years) evaluation of progression in patients with low-pressure glaucoma. Eur J Ophthalmol. 2015;25:490–5.Google Scholar
  176. 176.
    Chin YC, Perera SA, Tun TA, Teh GH, Cheung CY, Aung T, et al. Structural differences in the optic nerve head of glaucoma patients with and without disc hemorrhages. J Glaucoma. 2016;25:e76–81.Google Scholar
  177. 177.
    Lee JY, Sung KR, Lee JY. Comparison of the progression of high- and low-tension glaucoma as determined by two different criteria. Korean J Ophthalmol. 2016;30:40–7.Google Scholar
  178. 178.
    Seol BR, Kim S, Kim DM, Park KH, Jeoung JW, Kim SH. Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors. Jpn J Ophthalmol. 2017;61:230–6.Google Scholar
  179. 179.
    Ha A, Kim YK, Jeoung JW, Park KH. Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia. PLoS One. 2017;12:e0189706.Google Scholar
  180. 180.
    Moon Y, Sung KR, Kim JM, Shim SH, Yoo C, Park JH. Risk factors associated with glaucomatous progression in pseudoexfoliation patients. J Glaucoma. 2017;26:1107–13.Google Scholar
  181. 181.
    Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Venugopal JP, et al. Optical coherence tomography angiography vessel density measurements in eyes with primary open-angle glaucoma and disc hemorrhage. J Glaucoma. 2017;26:888–95.Google Scholar
  182. 182.
    Park HL, Kim JW, Park CK. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology. 2018;125:1003–13.Google Scholar
  183. 183.
    Kurvinen L, Harju M, Saari J, Vesti E. Altered temporal peripapillary retinal flow in patients with disc hemorrhages. Graefes Arch Clin Exp Ophthalmol. 2010;248:1771–5.Google Scholar
  184. 184.
    Nangia V, Jonas JB, Matin A, Bhojwani K, Sinha A, Kulkarni M, et al. Prevalence and associated factors of glaucoma in rural central India: the Central India Eye and Medical Study. PLoS One. 2013;8:e76434.Google Scholar
  185. 185.
    Yusuf IH, Ratnarajan G, Kerr RS, Salmon JF. Juvenile-onset normal tension glaucoma from chronic, recurrent low cerebrospinal fluid pressure. J Glaucoma. 2016;25:e738–40.Google Scholar
  186. 186.
    Lopilly Park HY, Jeon S, Lee MY, Park CK. Glaucoma progression in the unaffected fellow eye of glaucoma patients who developed unilateral branch retinal vein occlusion. Am J Ophthalmol. 2017;175:194–200.Google Scholar
  187. 187.
    Nitta K, Sugiyama K, Wajima R, Tachibana G. Is high myopia a risk factor for visual field progression or disk hemorrhage in primary open-angle glaucoma? Clin Ophthalmol. 2017;11:599–604.Google Scholar
  188. 188.
    Nitta K, Wajima R, Tachibana G, Inoue S, Ohigashi T, Otsuka N, et al. Prediction of visual field progression in patients with primary open-angle glaucoma, mainly including normal tension glaucoma. Sci Rep. 2017;7:15048.Google Scholar
  189. 189.
    Drance SM. Disc hemorrhages in the glaucomas. Surv Ophthalmol. 1989;33:331–7.Google Scholar
  190. 190.
    Sonnsjö B, Krakau CE. Arguments for a vascular glaucoma etiology. Acta Ophthalmol (Copenh). 1993;71:433–44.Google Scholar
  191. 191.
    Anderson DR. Collaborative normal tension glaucoma study. Curr Opin Ophthalmol. 2003;14:86–90.Google Scholar
  192. 192.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Komaroff E. Factors for progression and glaucoma treatment: the Early Manifest Glaucoma Trial. Curr Opin Ophthalmol. 2004;15:102–6.Google Scholar
  193. 193.
    Uhler TA, Piltz-Seymour J. Optic disc hemorrhages in glaucoma and ocular hypertension: implications and recommendations. Curr Opin Ophthalmol. 2008;19:89–94.Google Scholar
  194. 194.
    De Moraes CG, Liebmann JM, Ritch R. Predictive factors within the optic nerve complex for glaucoma progression: disc hemorrhage and parapapillary atrophy. Asia Pac J Ophthalmol (Phila). 2012;1:105–12.Google Scholar
  195. 195.
    Ernest PJ, Schouten JS, Beckers HJ, Hendrikse F, Prins MH, Webers CA. An evidence-based review of prognostic factors for glaucomatous visual field progression. Ophthalmology. 2013;120:512–9.Google Scholar
  196. 196.
    Hollands H, Johnson D, Hollands S, Simel DL, Jinapriya D, Sharma S. Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA. 2013;309:2035–42.Google Scholar
  197. 197.
    Konieczka K, Ritch R, Traverso CE, Kim DM, Kook MS, Gallino A, et al. Flammer syndrome. EPMA J. 2014;5:11.Google Scholar
  198. 198.
    Suh MH, Park KH. Pathogenesis and clinical implications of optic disk hemorrhage in glaucoma. Surv Ophthalmol. 2014;59:19–29.Google Scholar
  199. 199.
    Kim KE, Park KH. Optic disc hemorrhage in glaucoma: pathophysiology and prognostic significance. Curr Opin Ophthalmol. 2017;28:105–12.Google Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyGifu University Graduate School of MedicineGifu-shiJapan

Personalised recommendations