Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes

Summary

Aim

To assess the phospholipid bilayer of white blood cells (WBCs) and the ability of leukocytes to generate reactive oxygen species (ROS) in rats orally exposed to GdVO4:Eu3+ nanoparticle (VNP) solution for 2 weeks by fluorescent probes—ortho-hydroxy derivatives of 2,5-diaryl‑1,3‑oxazole.

Methods

Steady-state fluorescence spectroscopy, i.e., a study by the environment-sensitive fluorescent probes 2‑(2′-OH-phenyl)-5-(4′-phenyl-phenyl)-1,3-oxazole (probe O6O) and 2‑(2′-OH-phenyl)-phenanthro[9,10]-1,3-oxazole (probe PH7), and flow cytometry, i.e., analysis of 2′,7′-dichlorofluorescein (DCF), a product of a dye 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), fluorescence in CD45+/7-aminoactinomycin D (7-AAD) cells, were used to evaluate the state of cell membranes and reactive oxygen species (ROS) generation in leukocytes of rats orally exposed to gadolinium orthovanadate nanoparticles(VNPs).

Results

No significant changes were detected in the spectra of the fluorescent probes bound to the WBCs from the rats orally exposed to nanoparticles in comparison with the corresponding spectra of the probes bound to the cells from the control group of animals. This indicates that in the case of the rats orally exposed to nanoparticles, no noticeable changes in physicochemical properties (i.e., in the polarity and the proton-donor ability) are observed in the lipid membranes of WBCs in the region where the probes locate. There was no statistically significant difference in the amount of ROShigh viable leukocytes in rats treated with VNPs and control samples.

Conclusion

Neither changes in the physical and chemical properties of the leukocyte membranes nor in ROS generation by WBCs are detected in the rats orally exposed to VNP solution for 2 weeks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ramos AP, Cruz MAE, Tovani CB, et al. Biomedical applications of nanotechnology. Biophys Rev. 2017;9(2):79–89. https://doi.org/10.1007/s12551-016-0246-2.

  2. 2.

    McNamara К, Tofail SAM. Nanoparticles in biomedical applications. Adv Phys. 2017;2(1):54–88. https://doi.org/10.1080/23746149.2016.1254570.

  3. 3.

    Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018;37(3):209–30. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009.

  4. 4.

    Sukhanova A, Bozrova S, Sokolov P, et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13(1):44. https://doi.org/10.1186/s11671-018-2457-x.

  5. 5.

    Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017;18(12):2702. https://doi.org/10.3390/ijms18122702.

  6. 6.

    Li RX, He YW, Zhang SY, et al. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8:14–22.

  7. 7.

    Abass MA, Selim SA, Selim AO, et al. Effect of orally administered zinc oxide nanoparticles on albino rat thymus and spleen. IUBMB Life. 2017;69(7):528–39. https://doi.org/10.1002/iub.1638.

  8. 8.

    Di Gioacchino M, Petrarca C, Lazzarin F, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1):65–71.

  9. 9.

    Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–81.

  10. 10.

    Li X, Xiao Y, Cui Y, et al. Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein. J Cell Mol Med. 2014;18(12):2445–53. https://doi.org/10.1111/jcmm.12424.

  11. 11.

    Tkachenko AS, Marakushyn DI, Rezunenko YK, et al. A study of erythrocyte membranes in carrageenan-induced gastroenterocolitis by method of fluorescent probes. HVM Bioflux. 2018;10(2):37–41.

  12. 12.

    Klochkov VK, Malyshenko AI, Sedyh OO, et al. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re=La, Gd, Y) with rod-like and spindle-like shape. Funct Mater. 2011;1:111–5.

  13. 13.

    Posokhov YO, Kyrychenko A, Korniyenko Y. Derivatives of 2,5-diaryl‑1,3‑oxazole and 2,5-diaryl‑1,3,4-oxadiazole as environment-sensitive fluorescent probes for studies of biological membranes. In: Geddes CD, editor. Reviews in fluorescence 2017. Cham: Springer Nature Switzerland AG; 2018. pp. 199–230.

  14. 14.

    Doroshenko AO, Posokhov EA, Verezubova AA, et al. Radiationless deactivation of excited phototautomer form and molecular structure of ESIPT-compounds. Photochem Photobiol Sci. 2002;1:92–9.

  15. 15.

    Doroshenko AO, Posokhov EA, Verezubova AA, et al. Excited state intramolecular proton transfer reaction and luminescent properties of the ortho-hydroxy derivatives of 2,5-diphenyl‑1,3,4-oxadiazole. J Phys Org Chem. 2000;13:253–65.

  16. 16.

    Doroshenko AO, Posokhov EA. Proton phototransfer in a series of ortho-hydroxy derivatives of 2,5-diphenyl‑1,3‑оxazole and 2,5-diphenyl‑1,3,4-оxadiazole in polystyrene films. Theor Expert Chem. 1999;35(6):334–7.

  17. 17.

    Doroshenko AO, Posokhov EA, Shershukov VM, et al. Intramolecular proton-transfer reaction in an excited state in a series of ortho-hydroxy derivatives of 2,5-diaryloxazole. High Energy Chem. 1997;31(6):388–94.

  18. 18.

    Silver RB. Ratio imaging: practical considerations for measuring intracellular calcium and pH in living tissue. Methods Cell Biol. 1998;56:237–51.

  19. 19.

    Posokhov Y, Kyrychenko A. Location of fluorescent probes (2-hydroxy derivatives of 2,5-diaryl‑1,3‑oxazole) in lipid membrane studied by fluorescence spectroscopy and molecular dynamics simulation. Biophys Chem. 2018;235:9–18.

  20. 20.

    Dobretsov GE. Fluorescence probes in cell, membrane and lipoprotein investigations. Moscow: Nauka; 1989. p. 277.

  21. 21.

    Kavok N, Grygorova G, Klochkov V, et al. The role of serum proteins in the stabilization of colloidal LnVO4:Eu3+ (Ln = La, Gd, Y) and CeO2 nanoparticles. Colloids Surf A Physicochem Eng Asp. 2017;529:594–9. https://doi.org/10.1016/j.colsurfa.2017.06.052.

  22. 22.

    Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44. https://doi.org/10.1039/c6cs00636a.

  23. 23.

    Gustafson HH, Holt-Casper D, Grainger DW, et al. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. https://doi.org/10.1016/j.nantod.2015.06.006.

  24. 24.

    Betker JL, Jones D, Childs CR, et al. Nanoparticle uptake by circulating leukocytes: a major barrier to tumor delivery. J Control Release. 2018;286:85–93. https://doi.org/10.1016/j.jconrel.2018.07.031.

  25. 25.

    Catalá Á. Lipid peroxidation modifies the assembly of biological membranes “the lipid whisker model”. Front Physiol. 2015;5:520. https://doi.org/10.3389/fphys.2014.00520.

  26. 26.

    Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‑hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. https://doi.org/10.1155/2014/360438.

  27. 27.

    Reiter RJ, Tan DX, Galano A. Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol. 2014;5:377. https://doi.org/10.3389/fphys.2014.00377.

  28. 28.

    Klochkov VK, Kaliman VP, Karpenko NA, et al. In vivo effects of rare-earth based nanoparticles on oxidative balance in rats. Biotechnol Acta. 2016;6:72–81.

  29. 29.

    Gibbons E, Pickett KR, Streeter MC, et al. Molecular details of membrane fluidity changes during apoptosis and relationship to phospholipase A(2) activity. Biochim Biophys Acta. 2013;1828(2):887–95. https://doi.org/10.1016/j.bbamem.2012.08.024.

  30. 30.

    Jourd’heuil D, Aspinall A, Reynolds JD, et al. Membrane fluidity increases during apoptosis of sheep ileal Peyer’s patch B cells. Can J Physiol Pharmacol. 1996;74(6):706–11.

  31. 31.

    Tkachenko A, Marakushyn D, Kalashnyk I, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica). 2018;15(2):87–92. https://doi.org/10.17392/946-18.

  32. 32.

    Gianulis EC, Pakhomov AG. Gadolinium modifies the cell membrane to inhibit permeabilization by nanosecond electric pulses. Arch Biochem Biophys. 2015;570:1–7. https://doi.org/10.1016/j.abb.2015.02.013.

  33. 33.

    Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev. 2013;42(12):5552–76. https://doi.org/10.1039/c3cs60064e.

Download references

Author information

Correspondence to Associate Professor Anton S. Tkachenko PhD.

Ethics declarations

Conflict of interest

A.S. Tkachenko, V.K. Klochkov, V.N. Lesovoy, V.V. Myasoedov, N.S. Kavok, A.I. Onishchenko, S.L. Yefimova, and Y.O. Posokhov declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, A.S., Klochkov, V.K., Lesovoy, V.N. et al. Orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes. Wien Med Wochenschr (2020). https://doi.org/10.1007/s10354-020-00735-4

Download citation

Keywords

  • Fluorescent probes
  • Flow cytometry
  • White blood cells
  • Reactive oxygen species
  • 2′,7′-dichlorodihydrofluorescein diacetate