Advertisement

Hashimoto Thyreoiditis, therapeutische Optionen und extrathyreoidale Assoziationen – ein aktueller Überblick

  • Eva PetnehazyEmail author
  • Wolfgang Buchinger
themenschwerpunkt

Zusammenfassung

Die Hashimoto Thyreoiditis ist eine der häufigsten organspezifischen Autoimmunerkrankungen des Menschen mit konsekutiver Organdestruktion und folglich die häufigste Ursache einer primären Hypothyreose in ausreichend jodversorgten Gebieten. Immunpathogenetisch nehmen die CD4+ T‑Zellen und ihre Differenzierungen eine Schlüsselrolle ein. Ätiologisch Einfluss haben genetische, aber auch Umweltfaktoren, existentielle Faktoren (weibliches Geschlecht) und auch der Darm und die Darmflora. Zur Diagnosestellung benötigt werden eine ausführliche Anamnese, Sonographie und laborchemische Bestimmung der Schilddrüsenfunktion und Schilddrüsenantikörper. Bei laborchemischer Hypothyreose wird das fehlende Hormon durch synthetisch hergestelltes Levothyroxin ersetzt, mit besonderem Augenmerk auf Lebensphasen mit Mehrbedarf wie zum Beispiel Schwangerschaft. Ursache für eine persistierende Beschwerdesymptomatik trotz laborchemisch euthyreoter Funktionslage unter Substitution kann einerseits eine Fehlzuordnung der Beschwerden (Co-Morbiditäten wie z. B. Vorliegen weiterer Autoimmunerkrankungen, chronische Überlastung, psychiatrische Erkrankungen), Mangel an Vitamin- und Spurenelementen, aber auch pharmakokinetische und pharmakogenomische Eigenschaften der Levothyroxinmedikation sein. Andererseits werden Resistenzen, Transport- und Konversionsstörung von Schilddrüsenhormon auf molekularbiologischer Ebene durch endogene Störungen wie Insulinresistenz und Nebenniereninsuffizienz diskutiert. Auch die Einflüsse der Schilddrüse auf die Psyche und umgekehrt scheinen mannigfaltig und auf vielen Ebenen stattzufinden. Es bedarf noch vieler großer randomisierter Studien und biochemischer, molekularbiologischer, genetischer Untersuchungen und Forschung im Bereich des Neuroimaging, um die komplexen Zusammenhänge zu klären.

Schlüsselwörter

Hashimoto Thyreoiditis Therapeutische Optionen Schilddrüse und Darm Psychische Aspekte 

Hashimoto thyroiditis, therapeutic options and extrathyroidal options – an up-to-date overview

Summary

Hashimoto’s thyroiditis is one of the most common organspecific autoimune diseases and the most frequent cause of hypothyroidism in areas with sufficient iodine supply. Excessively stimulated T cells CD4+ and their differentiated cells are known to play a key role in the pathogenesis. It is currently accepted that on the one hand genetic susceptibility, environmental factors, existential factors (gender difference) play an important role, on the other hand gut and intestinal microbiota seem to contribute to its development too. Diagnosis requires a detailed medical history, sonography, and blood analysis of thyroid function and thyroid antibodies. In case of an overt or subclinical hypothyroidism long-term or lifelong levothyroxine replacement may be needed, with a special focus on phases with an additional demand like during pregnancy. There are multifactorial reasons for poor response to therapy despite normal TSH levels in blood sampling like co-morbidities (other organspecific autoimmune diseases, psychiatric diseases), lack of vitamin and trace elements. Pharmacogenomic and pharmacokinetic factors may impact on levothyroxine bioavailability, also thyroid hormone resistance and transport- or conversion disorder due to insulin resistance or adrenal insufficiency for example. The relations between thyroid function, mental status and psychiatric disorders seem to be complex and the mechanisms underlying the interactions remain to be clarified. Continuing research in biochemical, genetic and neuroimaging fields are needed.

Keywords

Hashimoto’s thyroiditis Therapeutic options Thyroid-gut axis Psychic aspects 

Notes

Interessenkonflikt

E. Petnehazy und W. Buchinger geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):391–7.  https://doi.org/10.1016/j.autrev.2014.01.007.CrossRefPubMedGoogle Scholar
  2. 2.
    Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286–95.  https://doi.org/10.1016/S2213-8587(14)70225-6.CrossRefPubMedGoogle Scholar
  3. 3.
    Weetman AP, McGregor AM. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev. 1994;15(6):788–830.PubMedGoogle Scholar
  4. 4.
    Pyzik A, Grywalska EJ, Matyjaszek-Matuszek B, et al. Immune disorders in Hashimoto’s Thyroiditis: what do we know so far? Immunol Res. 2015;  https://doi.org/10.1155/2015/979167.CrossRefGoogle Scholar
  5. 5.
    Wiersinga WM. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol Metab (Seoul). 2016;31(2):213–22.  https://doi.org/10.3803/EnM.2016.31.2.213.CrossRefGoogle Scholar
  6. 6.
    Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80.CrossRefGoogle Scholar
  7. 7.
    Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, Wang BM. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015;21(1):102–11.  https://doi.org/10.3748/wjg.v21.i1.102.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mori K, Nakagawa Y, Ozaki H. Does the gut microbiota trigger Hashimoto’s thyroiditis? Discov Med. 2012;14(78):321–6.PubMedGoogle Scholar
  9. 9.
    Campbell AW. Autoimmunity and the gut. Autoimmune Dis. 2014;  https://doi.org/10.1155/2014/152428.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    De Groot L, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(8):2543–65.  https://doi.org/10.1210/jc.2011-2803.CrossRefPubMedGoogle Scholar
  11. 11.
    Alexander EK, Pearce EN, Brent GA, et al. 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315–89.  https://doi.org/10.1089/thy.2016.0457. Erratum in: Thyroid. 2017 Sep;27(9):1212. PubMed PMID: 28056690..CrossRefPubMedGoogle Scholar
  12. 12.
    Lazarus J, Brown RS, Daumerie C, et al. 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):76–94.  https://doi.org/10.1159/000362597.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maraka S, Ospina NM, O’Keeffe DT, et al. Subclinical hypothyroidism in pregnancy: a systematic review and meta-analysis. Thyroid. 2016;26(4):580–90.  https://doi.org/10.1089/thy.2015.0418.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bektas Uysal H, Kaohsiung AM. Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. J Med Sci. 2016;32(8):427–33.  https://doi.org/10.1016/j.kjms.2016.06.006.CrossRefGoogle Scholar
  15. 15.
    Fjaellegaard K, Kvetny J, Allerup PN, Bech P, Ellervik C. Well-being and depression in individuals with subclinical hypothyroidism and thyroid autoimmunity—a general population study. Nord J Psychiatry. 2015;69(1):73–8.  https://doi.org/10.3109/08039488.2014.929741.CrossRefPubMedGoogle Scholar
  16. 16.
    Krysiak R, Drosdzol-Cop A, Skrzypulec-Plinta V, Okopien B. Sexual function and depressive symptoms in young women with thyroid autoimmunity and subclinical hypothyroidism. Clin Endocrinol (oxf). 2016;84(6):925–31.  https://doi.org/10.1111/cen.12956.CrossRefGoogle Scholar
  17. 17.
    Dew R, Okosieme O, Dayan C, et al. Clinical, behavioural and pharmacogenomic factors influencing the response to levothyroxine therapy in patients with primary hypothyroidism-protocol for a systematic review. Syst Rev. 2017;6(1):60.  https://doi.org/10.1186/s13643-017-0457-z.Review.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol. 2014;170(6):R241–R52.  https://doi.org/10.1530/EJE-14-0047.CrossRefPubMedGoogle Scholar
  19. 19.
    Andersen SL, Olsen J, Wu CS, Laurberg P. Smoking reduces the risk of hypothyroidism and increases the risk of hyperthyroidism: evidence from 450,842 mothers giving birth in Denmark. Clin Endocrinol (Oxf). 2014;80(2):307–14.  https://doi.org/10.1111/cen.12279.CrossRefGoogle Scholar
  20. 20.
    Carlé A, Bülow Pedersen I, Knudsen N. Smoking cessation is followed by a sharp but transient rise in the incidence of overt autoimmune hypothyroidism—a population-based, case-control study. Clin Endocrinol (Oxf). 2012;77(5):764–72.  https://doi.org/10.1111/j.1365-2265.2012.04455.x.CrossRefGoogle Scholar
  21. 21.
    Carlé A, Pedersen IB, Knudsen N. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: a population-based case-control study. Eur J Endocrinol. 2012;167(4):483–90.  https://doi.org/10.1530/EJE-12-0356.CrossRefPubMedGoogle Scholar
  22. 22.
    Gärtner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Seleniumsupplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002;87(4):1687–91.CrossRefGoogle Scholar
  23. 23.
    Duntas LH, Mantzou E. Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur J Endocrinol. 2003;184(4):389–93.CrossRefGoogle Scholar
  24. 24.
    Turker O, Kumanlioglu K, Karapolat I, Dogan I. Selenium treatment in autoimmune thyroiditis: 9‑month follow-up with variable doses. J Endocrinol. 2006;190(1):151–6.CrossRefGoogle Scholar
  25. 25.
    Karanikas G, Schuetz M, Kontur S, et al. No immunological benefit of selenium in consecutive patients with autoimmune thyroiditis. Thyroid. 2008;18(1):7–12.  https://doi.org/10.1089/thy.2007.0127.CrossRefPubMedGoogle Scholar
  26. 26.
    Nacamulli D, Mian C, Petricca D, et al. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clin Endocrinol (Oxf). 2010;73(4):535–9.  https://doi.org/10.1111/j.1365-2265.2009.03758.x.CrossRefGoogle Scholar
  27. 27.
    Eskes SA, Endert E, Fliers E, et al. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol (Oxf). 2014;80(3):444–51.  https://doi.org/10.1111/cen.12284.CrossRefGoogle Scholar
  28. 28.
    Wu Q, Rayman MP, Lv H, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab. 2015;100(11):4037–47.  https://doi.org/10.1210/jc.2015-2222.CrossRefPubMedGoogle Scholar
  29. 29.
    Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68.  https://doi.org/10.1016/S0140-6736(11)61452-9.CrossRefPubMedGoogle Scholar
  30. 30.
    van Zuuren EJ, Albusta AY, Fedorowicz Z, Carter B, Pijl H. Selenium supplementation for Hashimoto’s thyroiditis: summary of a Cochrane Systematic Review. Eur Thyroid J. 2014;3(1):25–31.  https://doi.org/10.1159/000356040.CrossRefPubMedGoogle Scholar
  31. 31.
    Hu S, Rayman MP. Multiple nutritional factors and the risk of Hashimoto’s thyroiditis. Thyroid. 2017;27(5):597–610.  https://doi.org/10.1089/thy.2016.0635.CrossRefPubMedGoogle Scholar
  32. 32.
    Liontiris MI, Mazokopakis EE. A concise review of Hashimoto thyroiditis (HT)and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients. Points that need more investigation. Hell J Nucl Med. 2017;20(1):51–56.  https://doi.org/10.1967/s002449910507. (Epub 2017 Mar 20. Review)CrossRefPubMedGoogle Scholar
  33. 33.
    Luo Y, Kawashima A, Ishido Y, Yoshihara A, Oda K, Hiroi N, Ito T, Ishii N, Suzuki K. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int J Mol Sci. 2014;15(7):12895–912.  https://doi.org/10.3390/ijms150712895.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Miranda DM, Massom JN, Catarino RM, Santos RT, Toyoda SS, Marone MM, Tomimori EK, Monte O. Impact of nutritional iodine optimization on rates of thyroid hypoechogenicity and autoimmune thyroiditis: a cross-sectional, comparative study. Thyroid. 2015;25(1):118–24.  https://doi.org/10.1089/thy.2014.0182.CrossRefPubMedGoogle Scholar
  35. 35.
    Indolfi G, Stagi S, Bartolini E, Salti R, de Martino M, Azzari C, Resti M. Thyroid function and anti-thyroid autoantibodies in untreated children with vertically acquired chronic hepatitis C virus infection. Clin Endocrinol (Oxf). 2008;68(1):117–21.CrossRefGoogle Scholar
  36. 36.
    Kahaly GJ, Frommer L, Schuppan D. Celiac disease and glandular autoimmunity. Nutrients. 2018;10(7):E814.  https://doi.org/10.3390/nu10070814.CrossRefPubMedGoogle Scholar
  37. 37.
    Lerner A, Jeremias P, Matthias T. Gut-thyroid axis and celiac disease. Endocr Connect. 2017;6(4):R52–R8.  https://doi.org/10.1530/EC-17-0021.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lye Ch’ng C, Keston Jones M, Kingham JGC. Celiac Disease an Autoimmune Thyroid disease. Clin Med Res. 2007;5(3):184–92.  https://doi.org/10.3121/cmr.2007.738.CrossRefGoogle Scholar
  39. 39.
    Sun X, Lu L, Yang R, Li Y, Shan L, Wang Y. Increased incidence of thyroid disease in patients with celiac disease: a systematic review and meta-analysis. PLoS ONE. 2016;11(12):e168708.  https://doi.org/10.1371/journal.pone.0168708.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bektas Uysal H, Ayhan M. Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. Kaohsiung J Med Sci. 2016;32(8):427–33.  https://doi.org/10.1016/j.kjms.2016.06.006.CrossRefPubMedGoogle Scholar
  41. 41.
    Djurovic M, Pereira AM, Smit JWA, Vasovic O, Damjanovic S, Jemuovic Z, Pavlovic D, Miljic D, Pekic S, Stojanovic M, Asanin M, Krljanac G, Petakov M. Cognitive functioning and quality of life in patients with Hashimoto thyroiditis on long-term levothyroxine replacement. Endocrine. 2018;  https://doi.org/10.1007/s12020-018-1649-6.CrossRefPubMedGoogle Scholar
  42. 42.
    Kramer CK, von Mühlen D, Kritz-Silverstein D, Barrett-Connor E. Treated hypothyroidism, cognitive function, and depressed mood in old age: the Rancho Bernardo Study. Eur J Endocrinol. 2009;161(6):917–21.  https://doi.org/10.1530/EJE-09-0606.CrossRefPubMedGoogle Scholar
  43. 43.
    Dayan CM, Panicker V. Hypothyroidism and depression. Eur Thyroid J. 2013;2(3):168–79.  https://doi.org/10.1159/000353777.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Leyhe T, Müssig K. Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain Behav Immun. 2014;41:261–6.  https://doi.org/10.1016/j.bbi.2014.03.008.CrossRefPubMedGoogle Scholar
  45. 45.
    De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, Hrsg. Endotext. South Dartmouth (MA): MDText.com. 2000. http://www.ncbi.nlm.nih.gov/books/NBK278943/. Zugegriffen: 2. September 2015Google Scholar
  46. 46.
    Jahagirdar V, McNay EC. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis. 2012;27(2):101–11.  https://doi.org/10.1007/s11011-012-9291-0.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hage MP, Azar ST. The link between thyroid function and depression. J Thyroid Res. 2012;  https://doi.org/10.1155/2012/590648.CrossRefPubMedGoogle Scholar
  48. 48.
    Panicker V, Saravanan P, Vaidya B, Evans J, Hattersley AT, Frayling TM, Dayan CM. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94(5):1623–9.  https://doi.org/10.1210/jc.2008-1301.CrossRefPubMedGoogle Scholar
  49. 49.
    Saravanan P, Simmons DJ, Greenwood R, Peters TJ, Dayan CM. Partial substitution of thyroxine (T4) with tri-iodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J Clin Endocrinol Metab. 2005;90(2):805–12.CrossRefGoogle Scholar
  50. 50.
    Montagna G, Imperiali M, Agazzi P, D’Aurizio F, Tozzoli R, Feldt-Rasmussen U, Giovanella L. Hashimoto’s encephalopathy: a rare proteiform disorder. Autoimmun Rev. 2016;15(5):466–76.  https://doi.org/10.1016/j.autrev.2016.01.014.CrossRefPubMedGoogle Scholar
  51. 51.
    Schnedl WJ, et al. Improvement of cerebral hypoperfusion with levothyroxine therapy in Hashimoto’s encephalopathy demonstrated by (99m)Tc-HMPAO-SPECT. Eur Thyroid J. 2013;2(2):116–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Demers LM, Spencer CA. NACB: laboratory support for the diagnosis and monitoring of thyroid disease. 2002.Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Innere MedizinKrankenhaus der Barmherzigen Brüder Graz, Standort Graz-EggenbergGrazAustria
  2. 2.Institut für Schilddrüsendiagnostik und Nuklearmedizin GleisdorfGleisdorfAustria

Personalised recommendations