Nucleated red blood cells and serum lactate values on days 2 and 5 are associated with mortality and morbidity in VLBW infants

  • Martin Poryo
  • Antonia Wissing
  • Michael Zemlin
  • Aylin Aygün
  • Daniel Ebrahimi-Fakhari
  • Jürgen Geisel
  • Jakob Schöpe
  • Stefan Wagenpfeil
  • Harald Sauer
  • Sascha Meyer
original article



To correlate nucleated red blood cell counts and serum lactate concentrations on day 2 and 5 of life with morbidity and mortality in very low birth weight infants and to determine corresponding cutoff values.


Retrospective analysis in a cohort of very low birth weight infants.


250 very low birth weight infants were included in this study. Gestational age ranged from 23 to 35 weeks (mean 29.04) and birth weight was 320–1500 g (mean 1047.9). 55 (22%) patients developed intraventricular hemorrhage, 55 (22%) bronchopulmonary dysplasia, 12 (4.8%) periventricular leukomalacia, 93 (37.2%) retinopathy of prematurity, and 1 (0.4%) necrotizing enterocolitis. Mortality rate was 25/250 (10%). Nucleated red blood cells and serum lactate on day 2 of life were associated with mortality (p < 0.001). Serum lactate on day 5 of life demonstrated an association with retinopathy of prematurity (p = 0.017), bronchopulmonary dysplasia (p = 0.044), and intraventricular hemorrhage (p < 0.001). Cutoff values predicting mortality were >89.5 nucleated red blood cells/100 leucocytes (sensitivity 68.2%, specificity 89.0%) and serum lactate concentrations >8.5 mmol/l (sensitivity 69.6%, specificity 93.5%) on day 2 of life.


We conclude that both nucleated red blood cell count and serum lactate concentration are valuable biomarkers in predicting important outcome parameters in very low birth weight infants.


Nucleated red blood cells Serum lactate VLBW infants Morbidity Mortality 



Area under the curve


Bronchopulmonary dysplasia


Birth weight


95% confidence interval


Extracorporeal membrane oxygenation


Estimated fetal weight


Gestational age


Intrauterine growth restriction


Intraventricular hemorrhage


Necrotizing enterocolitis


Neonatal intensive care unit


Nucleated red blood cell


Odds ratio


Periventricular leukomalacia


Retinopathy of prematurity


Very low birth weight

Normoblasten und Serumlaktatkonzentrationen an Lebenstag 2 und 5 sind mit Mobidität und Mortalität von VLBW-Neonaten assoziiert



Ziel der Untersuchung war es die Normoblastenzahl und Serumlaktatkonzentration an Lebenstag 2 und 5 mit der Morbidität und Mortalität von very low birth weight-Neonaten zu korrelieren und Cut-off-Werte zu bestimmen.


Retrospektive Analyse in einer Gruppe von very low birth weight-Neonaten.


Insgesamt 250 very low birth weight-Neonaten wurden in die Studie eingeschlossen. Das Gestationsalter reichte von 23 bis 35 Schwangerschaftswochen (Mittelwert 29,04) und das Geburtsgewicht von 320 bis 1500 g (Mittelwert 1047,9). 55 (22 %) Patienten entwickelten eine intraventrikuläre Blutung, 55 (22 %) eine bronchopulmonale Dysplasie, 12 (4,8 %) eine periventrikuläre Leukomalazie, 93 (37,2 %) eine Frühgeborenen-Retinopathie und ein Patient (0,4 %) eine nekrotisierende Enterokolitis. Die Mortalität betrug 25/250 (10 %). Die Normoblasten und Serumlaktatkonzentrationen an Lebenstag 2 waren mit einer erhöhten Mortalität assoziiert (p < 0,001). Die Serumlaktatkonzentrationen an Lebenstag 5 war mit einer erhöhten Rate an Frühgeborenen-Retinopathie (p = 0,017), bronchopulmonaler Dysplasie (p = 0,044) und intraventrikulärer Blutung (p < 0,001) assoziiert. Cut-off-Werte > 89,5 Normoblasten/100 Leukozyten (Sensitivität 68,2 %, Spezifität 89,0 %) und Serumlaktatkonzentrationen > 8,5 mmol/l (Sensitivität 69,6 %, Spezifität 93,5 %) an Lebenstag 2 wiesen auf eine erhöhte Mortalität hin.


Wir schließen daraus, dass beide, die Normoblastenzahl als auch die Serumlaktatkonzentration, wertvolle Biomarker sind, die wichtige Outcome-Parameter von very low birth weight-Neonaten vorhersagen können.


Normoblasten Serumlaktat VLBW-Neonaten Morbidität Mortalität 


Conflict of interest

M. Poryo, A. Wissing, M. Zemlin, A. Aygün, D. Ebrahimi-Fakhari, J. Geisel, J. Schöpe, S. Wagenpfeil, H. Sauer, and S. Meyer declare that they have no competing interests.


  1. 1.
    Cremer M, Roll S, Gräf C, Weimann A, Bührer C, Dame C. Nucleated red blood cells as marker for an increased risk of unfavorable outcome and mortality in very low birth weight infants. Early Hum Dev. 2015;91:559–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Perrone S. Nucleated red blood cell count in term and preterm newborns: reference values at birth. Arch Dis Child Fetal Neonatal Ed. 2005;90:F174–F5.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Christensen RD, Henry E, Andres RL, Bennett ST. Reference ranges for blood concentrations of nucleated red blood cells in neonates. Neonatology. 2011;99:289–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Ghosh B, Mittal S, Kumar S, Dadhwal V. Prediction of perinatal asphyxia with nucleated red blood cells in cord blood of newborns. Int J Gynecol Obstet. 2003;81:267–71.CrossRefGoogle Scholar
  5. 5.
    Ferber A, Fridel Z, Weissmann-Brenner A, Minior VK, Divon MY. Are elevated fetal nucleated red blood cell counts an indirect reflection of enhanced erythropoietin activity? Am J Obstet Gynecol. 2004;190:1473–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Baschat AA, Gungor S, Kush ML, Berg C, Gembruch U, Harman CR. Nucleated red blood cell counts in the first week of life: a critical appraisal of relationships with perinatal outcome in preterm growth-restricted neonates. Am J Obstet Gynecol. 2007;197:1–8.CrossRefGoogle Scholar
  7. 7.
    Walsh B, Boylan G, Dempsey E, Murray D. Association of nucleated red blood cells and severity of encephalopathy in normothermic and hypothermic infants. Acta Paediatr. 2013;102:e64–e7.CrossRefPubMedGoogle Scholar
  8. 8.
    Shah S, Tracy M, Smyth J. Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J Perinatol. 2004;24:16–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Nadeem M, Clarke A, Dempsey EM. Day 1 serum lactate values in preterm infants less than 32 weeks gestation. Eur J Pediatr. 2010;169:667–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Hawdon JM, Platt MPW, Aynsley-Green A. Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch Dis Child. 1992;67:357–65.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cousineau J, Anctil S, Carceller A, Gonthier M, Delvin EE. Neonate capillary blood gas reference values. Clin Biochem. 2005;38:905–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Poryo M, Wissing A, Aygün A, Geisel J, Wagenpfeil S, Zemlin M, Meyer S. Reference values for nucleated red blood cells and serum lactate in very and extremely low birth weight infants in the first week of life. Early Hum Dev. 2017;105:49–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O’Donoghue K, Hunter A, Morrison JJ, Burke G, Dicker P, Tully EC, Malone FD. Optimizing the definition of intrauterine growth restriction: The multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208(290):e1–290.e6.Google Scholar
  14. 14.
    Voigt M, Rochow N, Schneider KTM, Hagenah HP, Straube S, Scholz R, Hesse V, Hentschel R, Olbertz D. Neue Perzentilwerte für die Körpermaße neugeborener Einlinge: Ergebnisse der deutschen Perinatalerhebung der Jahre 2007–2011 unter Beteiligung aller 16 Bundesländer. Z Geburtshilfe Neonatol. 2014;218:210–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brotherton T. Neonatal Necrotizing Enterocolitis. Ann Surg. 1978;187:1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jobe AH, Bancalari E. Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.CrossRefPubMedGoogle Scholar
  18. 18.
    International Committee for the Classification o Retinopathy of Prematurity. The international classification of Retinopathy of Prematurity revisited. Arch Ophthalmol. 2005;123(7):991–9. Scholar
  19. 19.
    Röhr S, Sauer H, Gottschling S, Abdul-Khaliq H, Gortner L, Nunold H, Gräber S, Meyer S. Non-neurological, steroid-related adverse events in very low birth weight infants: a prospective audit. Swiss Med Wkly. 2014; 1–9. Scholar
  20. 20.
    Groenendaal F, Lindemans C, Uiterwaal CSPM, De Vries LS. Early arterial lactate and prediction of outcome in preterm neonates admitted to a neonatal intensive care unit. Biol Neonate. 2003;83:171–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Phillips LA, Dewhurst CJ, Yoxall CW. The prognostic value of initial blood lactate concentration measurements in very low birthweight infants and their use in development of a new disease severity scoring system. Arch Dis Child Fetal Neonatal Ed. 2011;96:F275–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Cheung PY, Chui N, Joffe AR, Rebeyka IM, Robertson CMT, Casiro O, Dyck JD, Harder JR, Sauve RS, Reid W, Blakley P. Postoperative lactate concentrations predict the outcome of infants aged 6 weeks or less after intracardiac surgery: A cohort follow-up to 18 months. J Thorac Cardiovasc Surg. 2005;130:837–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Cheung PY, Etches PC, Weardon M, Reynolds A, Finer NN, Robertson CM. Use of plasma lactate to predict early mortality and adverse outcome after neonatal extracorporeal membrane oxygenation: a prospective cohort in early childhood. Crit Care Med. 2002;30:2135–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Hussain F, Gilshenan K, Gray PH. Does lactate level in the first 12 hours of life predict mortality in extremely premature infants? J Paediatr Child Health. 2009;45:263–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Haiju Z, Suyuan H, Xiufang F, Lu Y, Sun R. The combined detection of umbilical cord nucleated red blood cells and lactate: Early prediction of neonatal hypoxic ischemic encephalopathy. J Perinat Med. 2008;36:240–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Martin Poryo
    • 1
  • Antonia Wissing
    • 2
  • Michael Zemlin
    • 5
  • Aylin Aygün
    • 2
  • Daniel Ebrahimi-Fakhari
    • 2
  • Jürgen Geisel
    • 3
  • Jakob Schöpe
    • 4
  • Stefan Wagenpfeil
    • 4
  • Harald Sauer
    • 1
  • Sascha Meyer
    • 5
    • 6
  1. 1.Department of Pediatric CardiologySaarland University HospitalHomburg/SaarGermany
  2. 2.Medical SchoolUniversity of SaarlandHomburg/SaarGermany
  3. 3.Department of Clinical chemistry and Laboratory medicineSaarland University Medical CenterHomburg/SaarGermany
  4. 4.Institute for Medical Biometry, Epidemiology and Medical InformaticsSaarland UniversityHomburg/SaarGermany
  5. 5.Department of Pediatrics and NeonatologySaarland University Medical CenterHomburg/SaarGermany
  6. 6.Department of Pediatric NeurologySaarland University Medical CenterHomburg/SaarGermany

Personalised recommendations