Wiener Medizinische Wochenschrift

, Volume 168, Issue 13–14, pp 367–373 | Cite as

Congenital fiber-type disproportion in an ambulatory rehabilitation setting

A case report
  • Stefano Palma
  • Mohammad Keilani
  • Tim Hasenoehrl
  • Clemens Ambrozy
  • Sara Dana
  • Thomas Sycha
  • Richard CrevennaEmail author
case report


Congenital fiber-type disproportion is a rare condition, histologically characterized by a relative type 1 fiber hypotrophy. The main clinical feature is mild-to-severe muscle weakness. In this report, we present the case of a 21-year-old patient with congenital fiber-type disproportion in an outpatient rehabilitative setting to evaluate the feasibility and results of an assessment battery, including bioimpedance analysis (BIA), dynamometry, 3D gait analysis, 6‑min walk test (6MWT), and the timed up and go test (TUG). The patient had a notable decrease in all functional scores. BIA: lean body mass, 38.4 kg (50.2 ± 5.3), body fat, 1.6% (12.4 ± 4.4); hand dynamometry: 18.5 kg left/20.0 kg right (44.8 ± 6.6); walking speed, 58 cm/s (122.7 ± 11.1), step length, 43.0 cm (61.6 ± 3.5); 6MWT: 478.5 m (638 ± 44); TUG: 9.4 s (8.1 ± 1.0). No adverse events were reported. The tests used were easily applicable in clinical routine and well tolerated by our patient.


Congenital structural myopathy Assessment Exercise Gait analysis Case report 

Kongenitale Muskelfaserdysproportion im ambulanten rehabilitativen Setting



Die kongenitale Muskelfaserdysproportion (KMFD, G71.2) ist eine seltene angeborene Muskelfasererkrankung und histologisch durch eine relative Typ-1-Faser-Hypotrophie charakterisiert. Klinisch imponiert eine generalisierte Muskelschwäche unterschiedlicher Ausprägung von leicht- bis schwergradig. Dieser Fallbericht beschreibt einen besonders stark betroffenen 21-jährigen KMFD-Patienten im ambulanten, physikalisch-medizinischen rehabilitativen Setting. Das Assessment erfolgte komplikationslos mittels Anamnese, klinischer Untersuchung, Bioimpedanzanalyse (BIA), Handdynamometrie, 3‑D-Ganganalyse, 6‑min-Gehtest (6MWT) und Timed-Up-and-Go-Test (TUG) als Basis zur Erstellung eines 3‑monatigen ambulanten physikalisch-rehabilitativen Therapieplans. Der Patient zeigte in allen Funktionsbereichen stark unterdurchschnittliche Werte: BIA: Magermasse 38,4 kg (50,2 ± 5,3), Fettmasse: 1,6 % (12,4 ± 4,4); Handdynamometrie 18,5 kg links/20,0 kg rechts (44,8 ± 6,6), Ganggeschwindigkeit 58 cm/s (122,7 ± 11,1), Schrittlänge 43,0 cm (61,6 ± 3,5); 6MWT: 478,5 m (638 ± 44); TUG 9,4 s (8,1 ± 1,0). Es wurden keine unerwünschten Ereignisse angegeben. Die Tests waren einfach im klinischen Routineablauf durchzuführen und wurden vom Patienten gut toleriert. Das beschriebene Assessment scheint sicher durchführbar zu sein und kann für dieses spezielle Patientenkollektiv, je nach Fragestellung, im ambulanten Setting empfohlen werden.


Kongenitale strukturelle Myopathie Assessment Training Ganganalyse Fallbericht 


Compliance with ethical guidelines

Conflict of interest

S. Palma, M. Keilani, T. Hasenoehrl, C. Ambrozy, S. Dana, T. Sycha, and R. Crevenna declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Amburgey K, McNamara N, Bennett LR, et al. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol. 2011;70(4):662–5.CrossRefGoogle Scholar
  2. 2.
    Clarke NF, North KN. Congenital fiber type disproportion – 30 years on. J Neuropathol Exp Neurol. 2003;62:977–89.CrossRefGoogle Scholar
  3. 4.
    Clarke NF, Waddell LB, Cooper ST, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010;31(7):E1544–50.CrossRefGoogle Scholar
  4. 6.
    North K, Wang CH, Clarke N, et al. International Standard of Care Committee for Congenital Myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24(2):97–116.CrossRefGoogle Scholar
  5. 7.
    North K. Congenital myopathies. In: Engel AG, Franzini-Armstrong C, editors. Myology, 3rd edn. New York: McGraw-Hill; 2004. pp. 1473–533.Google Scholar
  6. 8.
    North K, Goebel HH. Congenital myopathies. In: Jones HR, DeVivo DC, Darras BT, editors. Neuromuscular disorders in infancy, childhood and adolescence: a clinician’s approach. Woburn MA: Butterworth-Heinemann; 2003. pp. 601–32.Google Scholar
  7. 9.
    Andreoli A, Garaci F, Cafarelli FP, et al. Body composition in clinical practice. Eur J Radiol. 2016;85(8):1461–8.CrossRefGoogle Scholar
  8. 10.
    Data Input GmbH. Das B.I. A.-Kompendium 3. Ausgabe 2005. Accessed 12 Dec 2016.Google Scholar
  9. 11.
    Kyle UG, Bosaeus I, De Lorenzo AD, et al. Composition of the ESPEN Working Group. Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.CrossRefGoogle Scholar
  10. 12.
    American Thoracic Society. ATS statement: guidelines for the six-minute walk test. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. Am J Respir Crit Care Med. 2002;166(1):111–7.CrossRefGoogle Scholar
  11. 13.
    Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.CrossRefGoogle Scholar
  12. 14.
    Bohannon RW. Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther. 2006;29(2):64–8.CrossRefGoogle Scholar
  13. 15.
    Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2012;112(1):267–75.CrossRefGoogle Scholar
  14. 16.
    Montalcini T, Migliaccio V, Yvelise F, et al. Reference values for handgrip strength in young people of both sexes. Endocrine. 2013;43(2):342–5.CrossRefGoogle Scholar
  15. 17.
    Öberg T, Karsznia A, Öberg K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev. 1993;30(2):210–23.PubMedGoogle Scholar
  16. 18.
    Whittle MW, Levine D. Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait. Hum Mov Sci. 1999;18(5):681–92.CrossRefGoogle Scholar
  17. 19.
    Kerrigan DC, Todd MK, Della Croce U, et al. Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Arch Phys Med Rehabil. 1998;79(3):317–22.CrossRefGoogle Scholar
  18. 20.
    Brisson N, Lamontagne M, Kennedy MJ, et al. The effects of cam femoroacetabular impingement corrective surgery on lower-extremity gait biomechanics. Gait Posture. 2013;37(2):258–63.CrossRefGoogle Scholar
  19. 21.
    Biswas D, Dey A, Chakraborty M, et al. Habitual physical activity score as a predictor of the 6‑min walk test distance in healthy adults. Respir Investig. 2013;51(4):250–6.CrossRefGoogle Scholar
  20. 22.
    Chetta A, Zanini A, Pisi G, et al. Reference values for the 6‑min walk test in healthy subjects 20–50 years old. Respir Med. 2006;100(9):1573–8.CrossRefGoogle Scholar
  21. 23.
    Dedeken L, Chapusette R, Lê PQ, et al. Reduction of the six-minute walk distance in children with sickle cell disease is correlated with silent infarct: results from a cross-sectional evaluation in a single center in Belgium. PLOS ONE. 2014;9(10):e108922.CrossRefGoogle Scholar
  22. 24.
    Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med. 2007;39(1):14–20.CrossRefGoogle Scholar
  23. 25.
    Desloovere K, Molenaers G, Feys H, et al. Do dynamic and static clinical measurements correlate with gait analysis parameters in children with cerebral palsy? Gait Posture. 2006;24(3):302–13.CrossRefGoogle Scholar
  24. 26.
    Arnold AS, Liu MQ, Schwartz MH, et al. The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture. 2006;23(3):273–81.CrossRefGoogle Scholar
  25. 27.
    Frischhut B, Krismer M, Stoeckl B, et al. Pelvic tilt in neuromuscular disorders. J Pediatr Orthop B. 2000;9(4):221–8.CrossRefGoogle Scholar
  26. 28.
    Schutte LM, Narayanan U, Stout JL, et al. An index for quantifying deviations from normal gait. Gait Posture. 2000;11(1):25–31.CrossRefGoogle Scholar
  27. 29.
    Liu MQ, Anderson FC, Schwartz MH, et al. Muscle contributions to support and progression over a range of walking speeds. J Biomech. 2008;41:3243–52.CrossRefGoogle Scholar
  28. 30.
    Kwon JW, Son SM, Lee NK. Changes of kinematic parameters of lower extremities with gait speed: a 3D motion analysis study. J Phys Ther Sci. 2015;27(2):477–9.CrossRefGoogle Scholar
  29. 31.
    Sutherland DH, Cooper L, Daniel D. The role of the ankle plantar flexors in normal walking. J Bone Joint Surg Am. 1980;62(3):354–63.CrossRefGoogle Scholar
  30. 32.
    Robon MJ, Perell KL, Fang M, et al. The relationship between ankle plantar flexor muscle moments and knee compressive forces in subjects with and without pain. Clin Biomech. 2000;15(7):522–7.CrossRefGoogle Scholar
  31. 33.
    Sobreira C, Marques W Jr, Barreira AA. Myalgia as the revealing symptom of multicore disease and fibre type disproportion myopathy. J Neurol Neurosurg Psychiatr. 2003;74(9):1317–9.CrossRefGoogle Scholar
  32. 34.
    Cooper CB, Dolezal BA, Riley M, et al. Reverse fiber type disproportion: a distinct metabolic myopathy. Muscle Nerve. 2016;54(1):86–93.CrossRefGoogle Scholar
  33. 35.
    Fujak A, Haaker G, Funk J. Current care strategies for Duchenne muscular dystrophy. Orthopäde. 2014;43(7):636–42.CrossRefGoogle Scholar
  34. 36.
    Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of Physical Medicine, Rehabilitation and Occupational MedicineMedical University of ViennaViennaAustria
  2. 2.Department of NeurologyMedical University of ViennaViennaAustria

Personalised recommendations