Skip to main content
Log in

Kathetergestützter Aortenklappenersatz: eine neue therapeutische Option der Aortenklappenstenose?

Transcatheter aortic valve replacement: when should it be used in aortic stenosis?

  • review
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

30 % aller Patienten mit einer signifikanten Aortenstenose werden aufgrund eines hohen Operationsrisikos nicht mit einem konservativen Aortenklappenersatz behandelt. Eine minimalinvasive Alternative für diese Patienten bietet der kathetergestützte Aortenklappenersatz (transcatheter aortic valve replacement; TAVI). Man unterscheidet bei den minimalinvasiven Verfahren grundsätzlich den transfemoralen und den transapikalen Aortenklappenersatz. Bei ersterem werden die auf einen Stentrahmen aufgebrachten Klappen kathetergesteuert über die Femoralgefäße implantiert. Der Zugangsweg für zweiteren ist eine linksanterolaterale Mini-Thorakotomie im fünften Interkostalraum. Die häufigsten Komplikationen sind Gefäß- und Blutungskomplikationen, ein neu aufgetretener höhergradiger AV-Block, die Entwicklung einer paravalvulären Insuffizienz, ein akutes Nierenversagen, ein Schlaganfall sowie eine TIA. Erste Studien in einem Hochrisikokollektiv zeigen gute Ergebnisse. Damit bietet die TAVI Hochrisikopatienten eine sinnvolle Therapie. Weitere Studien zum Langzeitverlauf der Patienten stehen noch aus.

Summary

30% of patients with significant aortic stenosis are not considered for operative aortic valve replacement because of the high perioperative risk. An alternative catheter based option for these patients is the transcatheter aortic valve replacement (TAVI). In general, there are two approaches for TAVI: transfemoral and transapical. Transfemoral aortic valve replacement is performed by transcatheter replacement of an aortic valve via the femoral arteries. Transapical valve replacement is achieved by transcatheter implantation via the fifth intercostal space. The most common complications are vessel injuries, bleeding complications, new onset of AV-block, development of paravalvular insufficiency, acute kidney injury, stroke and TIA. The first long-term observations suggest positive results. First clinical trials in a high-risk population show a promising outcome. Therefore TAVI offers a reasonable therapy option for patients with high perioperative risk. Further long-term clinical trials are still pending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J, 24: 1231–1243, 2003.

    Article  PubMed  Google Scholar 

  2. Lindroos M, Kupari M, Heikkila J, Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol, 21: 1220–1225, 1993.

    Article  CAS  Google Scholar 

  3. Schwarz F, Baumann P, Manthey J, et al. The effect of aortic valve replacement on survival. Circulation, 66: 1105–1110, 1982.

    Article  CAS  Google Scholar 

  4. Bonow RO, Carabello BA, Kanu C, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation, 114: e84–231, 2006.

    Article  PubMed  Google Scholar 

  5. Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur J Cardiothorac Surg, 15: 816–822; discussion 822–813, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Iung B, Cachier A, Baron G, et al. Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? Eur Heart J, 26: 2714–2720, 2005.

    Article  PubMed  Google Scholar 

  7. Moulopoulos SD, Anthopoulos L, Stamatelopoulos S, Stefadouros M. Catheter-mounted aortic valves. Ann Thorac Surg, 11:423–430,1971.

    Article  CAS  Google Scholar 

  8. Matsubara T, Yamazoe M, Tamura Y, et al. Balloon catheter with check valves for experimental relief of acute aortic regurgitation. Am Heart J, 124: 1002–1008, 1992.

    Article  CAS  Google Scholar 

  9. Davies H, Lessof MH, Roberts CI, Ross DN. Homograft replacement of the aortic valve: follow-up studies in twelve patients. Lancet, 1: 926–929, 1965.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen HR, Knudsen LL, Hasenkam JM. Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur Heart J, 13: 704–708, 1992.

    CAS  Google Scholar 

  11. Bonhoeffer P, Boudjemline Y, Saliba Z, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet, 356: 1403–1405, 2000.

    Article  CAS  Google Scholar 

  12. Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106: 3006–3008, 2002.

    Article  PubMed  Google Scholar 

  13. Webb JG, Chandavimol M, Thompson CR, et al. Percutaneous aortic valve implantation retrograde from the femoral artery. Circulation, 113: 842–850, 2006.

    Article  PubMed  Google Scholar 

  14. Lichtenstein SV, Cheung A, Ye J, et al. Transapical transcatheter aortic valve implantation in humans: initial clinical experience. Circulation, 114: 591–596, 2006.

    Article  PubMed  Google Scholar 

  15. Vahanian A, Alfieri O, Al-Attar N, et al. Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J, 29: 1463–1470, 2008.

    Article  Google Scholar 

  16. Altiok E, Koos R, Schroder J, et al. Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart, 97: 1578–1584, 2011.

    Article  PubMed  Google Scholar 

  17. Messika-Zeitoun D, Serfaty JM, Brochet E, et al. Multimodal assessment of the aortic annulus diameter: implications for transcatheter aortic valve implantation. J Am Coll Cardiol, 55: 186–194, 2010.

    Article  PubMed  Google Scholar 

  18. Ng AC, Delgado V, van der Kley F, et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging, 3: 94–102, 2010.

    Article  PubMed  Google Scholar 

  19. Kurra V, Schoenhagen P, Roselli EE, et al. Prevalence of significant peripheral artery disease in patients evaluated for percutaneous aortic valve insertion: preprocedural assessment with multidetector computed tomography. J Thorac Cardiovasc Surg, 137: 1258–1264, 2009.

    Article  Google Scholar 

  20. Motloch LJ, Rottlaender D, Reda S, et al. Local versus general anesthesia for transfemoral aortic valve implantation. Clin Res Cardiol, 101: 45–53, 2012.

    Article  CAS  Google Scholar 

  21. Wisser W, Gabriel H, Mächler H, et al. (2010) Positionspapier der ÖKG und ÖGTHC zu katheterunterstützten Herzklappeninterventionen. Österreichische Gesellschaft für Thorax- und Herzchirurgie. http://www.herz-thorax.at/standards/index.php3/Positionspapier der OeKG und OeGTHC 2010. Cited 07 Feb 2012.

  22. Webb JG, Altwegg L, Boone RH, et al. Transcatheter aortic valve implantation: impact on clinical and valve-related outcomes. Circulation, 119: 3009–3016, 2009.

    Article  Google Scholar 

  23. Ye J, Cheung A, Lichtenstein SV, et al. Transapical transcatheter aortic valve implantation: follow-up to 3 years. J Thorac Cardiovasc Surg, 139: 1107–1113; 1113 e1101, 2010.

    Article  Google Scholar 

  24. Walther T, Schuler G, Borger MA, et al. Transapical aortic valve implantation in 100 consecutive patients: comparison to propensity-matched conventional aortic valve replacement. Eur Heart J, 31: 1398–1403, 2010.

    Article  Google Scholar 

  25. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med, 363: 1597–1607, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 364: 2187–2198, 2011.

    Article  CAS  PubMed  Google Scholar 

  27. Rodes-Cabau J, Webb JG, Cheung A, et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J Am Coll Cardiol, 55: 1080–1090, 2010.

    Article  Google Scholar 

  28. Khawaja MZ, Haworth P, Ghuran A, et al. Transcatheter aortic valve implantation for stenosed and regurgitant aortic valve bioprostheses CoreValve for failed bioprosthetic aortic valve replacements. J Am Coll Cardiol, 55: 97–101, 2010.

    Article  Google Scholar 

  29. Webb JG, Wood DA, Ye J, et al. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation, 121: 1848–1857, 2010.

    Article  PubMed  Google Scholar 

  30. Ducrocq G, Francis F, Serfaty JM, et al. Vascular complications of transfemoral aortic valve implantation with the Edwards SAPIEN prosthesis: incidence and impact on outcome. EuroIntervention, 5: 666–672, 2010.

    Article  PubMed  Google Scholar 

  31. Bleiziffer S, Ruge H, Mazzitelli D, et al. Results of percutaneous and transapical transcatheter aortic valve implantation performed by a surgical team. Eur J Cardiothorac Surg, 35: 615–620; discussion 620–611, 2009.

    Article  PubMed  Google Scholar 

  32. Al-Attar N, Raffoul R, Himbert D, Brochet E, Vahanian A, Nataf P. False aneurysm after transapical aortic valve implantation. J Thorac Cardiovasc Surg, 137: e21–22, 2009.

    Article  Google Scholar 

  33. Motloch LJ, Reda S, Rottlaender D, et al. Postprocedural atrial fibrillation after transcatheter aortic valve implantation versus surgical aortic valve replacement. Ann Thorac Surg, 93: 124–131, 2012.

    Article  PubMed  Google Scholar 

  34. Piazza N, Grube E, Gerckens U, et al. Procedural and 30-day outcomes following transcatheter aortic valve implantation using the third generation (18 Fr) corevalve revalving system: results from the multicentre, expanded evaluation registry 1-year following CE mark approval. EuroIntervention, 4: 242–249, 2008.

    Article  Google Scholar 

  35. Erkapic D, Kim WK, Weber M, et al. Electrocardiographic and further predictors for permanent pacemaker requirement after transcatheter aortic valve implantation. Europace, 12: 1188–1190, 2010.

    Article  PubMed  Google Scholar 

  36. Bleiziffer S, Ruge H, Horer J, et al. Predictors for new-onset complete heart block after transcatheter aortic valve implantation. JACC Cardiovasc Interv, 3: 524–530, 2010.

    Article  Google Scholar 

  37. Al Ali AM, Altwegg L, Horlick EM, et al. Prevention and management of transcatheter balloon-expandable aortic valve malposition. Catheter Cardiovasc Interv, 72: 573–578, 2008.

    Article  Google Scholar 

  38. Aregger F, Wenaweser P, Hellige GJ, et al. Risk of acute kidney injury in patients with severe aortic valve stenosis undergoing transcatheter valve replacement. Nephrol Dial Transplant, 24: 2175–2179, 2009.

    Article  PubMed  Google Scholar 

  39. Ghanem A, Muller A, Nahle CP, et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J Am Coll Cardiol, 55: 1427–1432, 2010.

    Article  Google Scholar 

  40. Kahlert P, Knipp SC, Schlamann M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation, 121: 870–878, 2010.

    Article  PubMed  Google Scholar 

  41. Detaint D, Lepage L, Himbert D, et al. Determinants of significant paravalvular regurgitation after transcatheter aortic valve: implantation impact of device and annulus discongruence. JACC Cardiovasc Interv, 2: 821–827, 2009.

    Article  Google Scholar 

  42. Cribier A, Eltchaninoff H, Tron C, et al. Treatment of calcific aortic stenosis with the percutaneous heart valve: mid-term follow-up from the initial feasibility studies: the French experience. J Am Coll Cardiol, 47: 1214–1223, 2006.

    Article  Google Scholar 

  43. Abdel-Wahab M, Zahn R, Horack M, et al. Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart, 97: 899–906, 2011.

    Article  PubMed  Google Scholar 

  44. Thomas M, Schymik G, Walther T, et al. One-Year Outcomes of Cohort 1 in the Edwards SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) Registry: the European registry of transcatheter aortic valve implantation using the edwards SAPIEN valve. Circulation, 124: 425–433, 2011.

    Article  PubMed  Google Scholar 

  45. Ludman PF. The United Kingdom transcatheter aortiv valve registry – outcomes to December 2009 and update. Heart, 97: 2011.

  46. Zahn R, Gerckens U, Grube E, et al. Transcatheter aortic valve implantation: first results from a multi-centre real-world registry. Eur Heart J, 32: 198–204, 2011.

    Article  Google Scholar 

  47. Petronio AS, De Carlo M, Bedogni F, et al. Safety and efficacy of the subclavian approach for transcatheter aortic valve implantation with the CoreValve revalving system. Circ Cardiovasc Interv, 3: 359–366, 2010.

    Article  Google Scholar 

  48. Grube E, Schuler G, Buellesfeld L, et al. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol, 50: 69–76, 2007.

    Article  Google Scholar 

  49. Himbert D, Descoutures F, Al-Attar N, et al. Results of transfemoral or transapical aortic valve implantation following a uniform assessment in high-risk patients with aortic stenosis. J Am Coll Cardiol, 54: 303–311, 2009.

    Article  Google Scholar 

  50. Walther T, Simon P, Dewey T, et al. Transapical minimally invasive aortic valve implantation: multicenter experience. Circulation, 116: I240–245, 2007.

    Article  PubMed  Google Scholar 

  51. Al-Attar N, Himbert D, Descoutures F, et al. Transcatheter aortic valve implantation: selection strategy is crucial for outcome. Ann Thorac Surg, 87: 1757–1762; discussion 1762–1753, 2009.

    Article  Google Scholar 

  52. Osten MD, Feindel C, Greutmann M, et al. Transcatheter aortic valve implantation for high risk patients with severe aortic stenosis using the Edwards Sapien balloon-expandable bioprosthesis: a single centre study with immediate and medium-term outcomes. Catheter Cardiovasc Interv, 75: 475–485, 2010.

    PubMed  Google Scholar 

  53. Svensson LG, Dewey T, Kapadia S, et al. United States feasibility study of transcatheter insertion of a stented aortic valve by the left ventricular apex. Ann Thorac Surg, 86: 46–54; discussion 54–45, 2008.

    Article  Google Scholar 

  54. Thielmann M, Wendt D, Eggebrecht H, et al. Transcatheter aortic valve implantation in patients with very high risk for conventional aortic valve replacement. Ann Thorac Surg, 88: 1468–1474, 2009.

    Article  Google Scholar 

  55. Ferrari E, Sulzer C, Marcucci C, Rizzo E, Tozzi P, von Segesser LK. Transapical aortic valve implantation without angiography: proof of concept. Ann Thorac Surg, 89: 1925–1932, 2010.

    Article  Google Scholar 

  56. Nielsen HH, Andersen HR, Hjortdal VE, et al. Catheter-based aortic valve substitution. Initial experiences with stent valve implantation. Ugeskr Laeger, 171: 2277–2281, 2009.

    Google Scholar 

  57. Fusari M, Alamanni F, Bona V, et al. Transcatheter aortic valve implantation in the operating room: early experience. J Cardiovasc Med (Hagerstown), 10: 383–393, 2009.

    Article  Google Scholar 

  58. Spargias K, Manginas A, Pavlides G, et al. Transcatheter aortic valve implantation: first Greek experience. Hellenic J Cardiol, 49: 397–407, 2008.

    PubMed  Google Scholar 

Download references

Interessenskonflikt

Die Abbildungen 1–5 wurden freundlicherweise von den Firmen Edwards Lifesciences und Medtronic zur Verfügung gestellt, welche entsprechend das Copyright halten. L. J. M., S. R., D. R., M. H. und U. C. H. geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Jaroslaw Motloch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motloch, L., Reda, S., Rottlaender, D. et al. Kathetergestützter Aortenklappenersatz: eine neue therapeutische Option der Aortenklappenstenose?. Wien Med Wochenschr 162, 340–348 (2012). https://doi.org/10.1007/s10354-012-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0136-6

Schlüsselwörter

Keywords

Navigation