, 65:36 | Cite as

A series of ecostratigraphic events across the Langhian/Serravallian boundary in an epicontinental setting: the northern Pannonian Basin

  • Katarína HolcováEmail author
  • Jiřina Dašková
  • Klement Fordinál
  • Juraj Hrabovský
  • Rastislav Milovský
  • Filip Scheiner
  • František Vacek
Original Article


The ŠO-1 core situated in the NE part of the Pannonian Basin represents a parastratotype of the Badenian stage (regional Central Paratethys stage corresponding to the Langhian and Serravallian). A 150-m-thick succession was deposited between ~ 14.2 and 13.5 Ma (dated by the last common occurrence of Helicosphaera waltrans to the last occurrence of Sphenolithus heteromorphus) and spans the Langhian/Serravallian boundary. The section was subdivided into four units: (1) A transgressive carbonate–siliciclastic complex (core depth ~ 150–122 m) deposited in an inner to mid carbonate ramp setting. Carbonate deposition was episodically interrupted by the input of terrigenous phytodetritus as a result of increased precipitation. (2) Tuffaceous siltstone (core depth ~ 122–48 m) corresponding to a sea-level highstand. This unit starts with a Pteropoda immigration event (14.5–14.2 Ma), which could be related to the closing of the Indian-Mediterranean corridor that triggered a change from Indian- to Atlantic-controlled surface circulation in the Mediterranean-Paratethys basin system. An enhanced proportion of high-nutrient markers and a decreased abundance of warm-water plankton might be indicative of eutrophication and cooling of Paratethyan waters at this time. (3) Lowstand sandstone (core depth ~ 48–26 m) indicating stabilization of sea-grass meadows with eutrophic and hypoxic conditions within their root system. A sea-level fall at this time is correlated with the Ser 1 event. (4) A Serravallian transgressive event (core depth ~ 26–5 m) associated with an increase in diversity of benthic assemblages and stabilization of stenohaline assemblages.


Middle Miocene Central Paratethys Paleobiological events Oxygen and carbon stable isotopes Transgressive–regressive cycles 



This project was supported by programs PROGRESS Q45, VEGA 02/122/18, Ministry of Culture of the Czech Republic (project DKRVO 2019–2023/1.IVa and 2.IIa; National Museum, 00023272). The authors greatly appreciate the reviews of Mihovil Brlek (Zagreb) and one anonymous reviewer as well as constructive comments of the handling editor Maurice Tucker that helped to improve the manuscript significantly. We thank Nela Doláková (Masaryk University, Brno) for her kind and very useful help with palynological analysis.

Supplementary material

10347_2019_576_MOESM1_ESM.xlsx (38 kb)
Supplementary material 1 (XLSX 35 kb)


  1. Abdul Aziz HA, Di Stefano LM, Foresi FJ, Hilgen SM, Iaccarino KF, Kuiper F, Lirer G, Salvatorini A, Turco E (2008) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol 257:123–138. CrossRefGoogle Scholar
  2. Abels HA, Hilgen FJ, Krijgsman W, Kruk RW, Raffi I, Turco E, Zachariasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20:PA4012. CrossRefGoogle Scholar
  3. Aguirre J, Braga JC, Bassi D (2017) Rhodoliths and rhodolith beds in the rock record. In: Riosmena–Rodriguez R, Aguirre J, Nelson W (eds) Rhodolith/Maërl beds: global perspective. Springer International Publishing, Switzerland, pp 105–138CrossRefGoogle Scholar
  4. Báldi K (2006) Paleoceanography and climate of the Badenian (Middle Miocene, 16.4–13.0 Ma) in the Central Paratethys based on foraminifera and stable isotope (δ18O and δ13C) evidence. Int J Earth Sci 95:119–142. CrossRefGoogle Scholar
  5. Báldi K, Hohenegger J (2008) Paleoecology of benthic foraminifera of the Baden-Sooss section (Badenian, Middle Miocene, Vienna Basin, Austria). Geol Carpath 59:411–424Google Scholar
  6. Barrera E, Keller G, Savin SM (1985) Evolution of the Miocene ocean in the eastern North Pacific as inferred from oxygen and carbon isotopic ratios in foraminifera. In: Kennett JP (ed) The Miocene Ocean. Geol Soc Am Mem 163:83–102. Google Scholar
  7. Bartol M, Pavsic J, Dobnikar M, Bernasconi SM (2008) Unusual Braarudosphaera bigelowii and Micrantholithus vesper enrichment in the Early Miocene sediments from the Slovenian Corridor, a seaway linking the Central Paratethys and the Mediterranean. Palaeogeogr Palaeocl 267:77–88. CrossRefGoogle Scholar
  8. Bassi D, Simone L, Nebelsick JH (2017). Re-sedimented Rhodoliths in Channelized Depositional Systems. In: Riosmena–Rodriguez R (ed) Rhodolith/Maërl Beds: global perspective. Springer International Publishing, Switzerland, pp 139–167. Google Scholar
  9. Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr Palaeocl 137:173–187. CrossRefGoogle Scholar
  10. Basso D, Fravega P, Piazza M, Vannucci G (1998) Biostratigraphic, paleobiogeographic and paleoecological implications in the taxonomic review of Corallinaceae. Rebd Lincei-Sci Fis 9:201–211. CrossRefGoogle Scholar
  11. Basso D, Nalin R, Nelson CS (2009) Shallow-water Sporolithon rhodoliths from North Island (New Zealand). Palaios 24:92–103CrossRefGoogle Scholar
  12. Bé AWH (1977) An ecological, zoogeographic and taxonomic review of Recent planktonic foraminifera. In: Ramsey ATS (ed) Oceanic micropaleontology:1. Academic Press, London, pp 1–100Google Scholar
  13. Bernoulli D, Hottinger L, Spezzaferri S, Stille P (2007) Miocene shallow-water limestones from São Nicolau (Cabo Verde): Caribbean-type benthic fauna and time considerations for volcanism. Swiss J Geo 100:215–225. CrossRefGoogle Scholar
  14. Bicchi E, Ferrero E, Gonera M (2003) Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monferrato (Tethys) records. Palaeogeogr Palaeocl 196:265–303. CrossRefGoogle Scholar
  15. Boeckel B, Baumann K-H, Henrich R, Kinkel H (2006) Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients. Deep Sea Res Part I 53(6):1073–1099. CrossRefGoogle Scholar
  16. Bohn-Havas M, Lantos M, Selmeczi I (2004) Biostratigraphic studies and correlation of tertiary planktonic gastropods (pteropods) from Hungary. Acta Palaeontol Rom 4:37–43Google Scholar
  17. Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535–547Google Scholar
  18. Brandano M, Civitelli G (2007) Non–seagrass meadow sedimentary facies of the Pontian Islands, Tyrrhenian Sea: a modern example of mixed carbonate–siliciclastic sedimentation. Sediment Geol 201:286–301. CrossRefGoogle Scholar
  19. Brzobohatý R (1987) Contribution to paleogeography of the Miocene basins of the Central Paratethys from otolith fauna. Miscell Micropalaeont II/2, Knihovn zem plyn nafta 6b:101–111Google Scholar
  20. Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sediment Geol 60:333–346. CrossRefGoogle Scholar
  21. Chernyshev IV, Konečný V, Lexa J, Kovalenker VA, Jeleň S, Lebedev VA, Goltsman YV (2013) K-Ar and Rb–Sr geochronology and evolution of the Štiavnica Stratovolcano (Central Slovakia). Geol Carpath 64:1–25. CrossRefGoogle Scholar
  22. Ćorić S, Hohenegger J (2008) Quantitative analyses of calcareous nannoplankton assemblages from the Baden-Sooss section (Middle Miocene of Vienna Basin, Austria). Geol Carpath 59(5):447–460Google Scholar
  23. de la Vara A, Meijer PTh, Wortel MJR (2013) Model study of the circulation of the Miocene Mediterranean Sea and Paratethys: closure of the Indian Gateway. Clim Past 9:4385–4424. CrossRefGoogle Scholar
  24. de Leeuw A, Bukowski K, KrijgsmanW Kuiper KF (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 38:715–718. CrossRefGoogle Scholar
  25. de Leeuw A, Tulbure M, Kuiper KF, Melinte-Dobrinescu MC, Stoica M, Krijgsman W (2018) New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian Salinity Crisis: indications for tectonic improvement of basin interconnectivity in Southern Europe. Glob Planet Chang 169:1–15CrossRefGoogle Scholar
  26. di Stefano A, Foresi LM, Lirer F, Iaccarino SM, Turco E, Amore FO, Morabito S, Salvatorini G, Mazzei R, Abdul Aziz H (2008) Calcareous plankton high resolution bio-magnetostratigraphy for the Langhian of the Mediterranean area. Riv Ital Paleontol S 114:51–76Google Scholar
  27. Doláková N, Holcová K, Nehyba S, Hladilová Š, Brzobohatý R, Zágoršek K, Hrabovský J, Seko M, Utescher T (2014) The Badenian parastratotype at Židlochovice from the perspective of the multiproxy study. Neues Jahrb Geol P M 271:169–201. CrossRefGoogle Scholar
  28. Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54:561–564Google Scholar
  29. Flores JA, Sierro FS, Francés G, Vasquez A, Zamarreno I (1997) The last 100,000 years in the western Mediterranean: sea surface water and frontal dynamics as revealed by coccolithophores. Mar Micropalaeontol 29:351–366CrossRefGoogle Scholar
  30. Flower BP, Kennett JP (1993) Middle Miocene ocean–climate transition: high-resolution oxygen and carbon isotopic records from deep sea drilling project Site 588A, southwest Pacific. Paleoceanography 8:811–843. CrossRefGoogle Scholar
  31. Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  32. Fordinál K, Kráľ J, Harčová E, Čech P, Zieliński G, Nagy A (2014) 87Sr/86Sr, δ13C and δ18O in mollusc fossil shells from marine, brackish and freshwater environments from the Western Carpathians Tertiary sequences. Mineralia Slovaca 46(1–2):23–44 [in Slovak with English summary] Google Scholar
  33. Gonera M, Peryt TM, Durakiewicz T (2000) Biostratigraphical and paleoenvironmental implications of isotopic studies (18O, 13C) of Middle Miocene (Badenian) foraminifers in the Central Paratethys. Terra Nova 12:231–238. CrossRefGoogle Scholar
  34. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale 2012 2-volume set. Elsevier, New YorkGoogle Scholar
  35. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeonol Electron 4(1):1–9Google Scholar
  36. Handler R, Ebner F, Neubauer F, Hermann S, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpath 57:483–494Google Scholar
  37. Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, New YorkCrossRefGoogle Scholar
  38. Hohenegger J, Andersen N, Báldi K, Æoriæ S, Pervesler P, Rupp C, Wagreich M (2008) Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria)—multivariate analysis of the Baden-Sooss section. Geol Carpath 59:461–487Google Scholar
  39. Hohenegger J, Ćorić S, Khatun M, Pervesler P, Rögl F, Rupp C, Selge A, Uchman A, Wagreich M (2009) Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria)—the Baden-Sooss core. Int J Earth Sci 98:915–930. CrossRefGoogle Scholar
  40. Hohenegger J, Corić S, Wagreich M (2014) Timing of the regional Badenian Stage (Middle Miocene, Central Paratethys). Geol Carpath 65:55–66. CrossRefGoogle Scholar
  41. Holcová K, Hrabovský J, Nehyba S, Hladilová Š, Doláková N, Demeny A (2015) The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record. Facies 61:1–26CrossRefGoogle Scholar
  42. Holcová K, Doláková N, Nehyba S, Vacek F (2018) Timing of Langhian bioevents in the Carpathian Foredeep and northern Pannonian Basin in relation to oceanographic, tectonic and climatic processes. Geol Q 62(1):3–17. CrossRefGoogle Scholar
  43. Höll C, Zonneveld KAF, Willems H (1998) On the ecology of calcareous dinoflagellates: the Quaternary eastern equatorial Atlantic. Mar Micropaleont 33:1–25. CrossRefGoogle Scholar
  44. Holmes SP, Miller N (2006) Aspects of the ecology and population genetics of the bivalve Corbula gibba. Mar Ecol Prog Ser 315:129–140. CrossRefGoogle Scholar
  45. Hornibrook NB (1992) New Zealand Cenozoic marine palaeoclimates: a review based on the distribution of some shallow water and terrestrial biota. In: Tsuchi R, Jr Ingle J C (eds) Pacific Neogene: Environment, Evolution, and Events. University of Tokyo Press, Tokyo, pp 83–106Google Scholar
  46. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannnian basin: constraints from observational data. In: Gee DG, Stephenson R (eds) Europian lithosphere dynamics. Geol Soc Lond Mem 32:191–206. CrossRefGoogle Scholar
  47. Hüsing SK, Cascella A, Hilgen FJ, Krijgsman W, Kuiper KF, Turco E, Winson D (2010) Astrochronology of the Mediterranean Langhian between 1529 and 1417 Ma. Earth Planet Sci Lett 290(3–4):256–269. CrossRefGoogle Scholar
  48. Johnson WS, Allen DM (2012) Zooplankton of the Atlantic and Gulf Coasts. A guide to their identification and ecology. The Johns Hopkins University Press, Baltimore, MarylandGoogle Scholar
  49. Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved oxygen levels in the modern ocean. Geology 22:719–722.<0719:BFDOIA>2.3.CO;2CrossRefGoogle Scholar
  50. Kameo K (2002) Late Pliocene Caribbean surface water dynamics and climatic changes based on calcareous nannofossil records. Palaeogeogr Palaeocl 179:211–226. CrossRefGoogle Scholar
  51. Keller G (1985) Depth stratification of planktonic foraminifers in the Miocene ocean. Geol Soc Amer Mem 163:177–195. CrossRefGoogle Scholar
  52. Konečný V (1971) Evolutionary stages of the Banská Štiavnica caldera and its postvolcanic structures. Bull Volcanol 35:95–116. CrossRefGoogle Scholar
  53. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian Region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGS Stephan Mueller Spec Publ Ser 1:105–123. CrossRefGoogle Scholar
  54. Kopecká J (2012) Foraminifera as environmental proxies of the Middle Miocene (Early Badenian) sediments of the Central Depression (Central Paratethys, Moravian part of the Carpathian Foredeep). Bull Geosci 87:431–442. CrossRefGoogle Scholar
  55. Kováč M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva Ľ, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58:579–606Google Scholar
  56. Kováč M, Plašienka D, Soták J, Vojtko R, Oszczypko N, Gy Less, Ćosović V, Fügenschuh B, Králiková S (2016) Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob Planet Chang 140:9–27. CrossRefGoogle Scholar
  57. Kováč M, Hudáčková N, Halásová E, Kováčová M, Holcová K, Oszczypko-Clowes M, Báldi K, Less G, Nagymarosy A, Ruman A, Klučiar T, Jamrich M (2017) The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geol Slovaca 9:75–114Google Scholar
  58. Kováč M, Halásová E, Hudáčková N, Holcová K, Hyžný M, Jamrich M, Ruman A (2018) Towards better correlation of the Central Paratethys regional time scale with the tonicard geological time scale of the Miocene Epoch. Geol Carpath 69(3):283–300. CrossRefGoogle Scholar
  59. Kováčová M, Doláková N, Kováč M (2011) Miocene vegetation pattern and climate change in the northwestern central Paratethys domain (Czech and Slovak Republic). Geol Carpath 62:251–266. CrossRefGoogle Scholar
  60. Lankreijer A, Kováč M, Cloetingh S, Pitoňák P, Hlôška M, Biermann C (1995) Quantitative subsidence analysis and forward modelling of the Vienna and Danube Basins: thin skinned versus thick skinned extension. Tectonophysics 252:433–451. CrossRefGoogle Scholar
  61. Latal Ch, Piller WE, Harzhauser M (2004) Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the Central Paratethys. Palaeogeogr Palaeocl 211:157–169. CrossRefGoogle Scholar
  62. Latal Ch, Piller WE, Harzhauser M (2006) Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/Middle Miocene transition. Palaeogeogr Palaeocl 231:347–360. CrossRefGoogle Scholar
  63. Lehotayová R, Ondrejičková A (1972) Mäkkýše a mikrofauna z vrtu ŠO-1 (Chľaba). MS, Archív Št. geol. úst. D. Štúra, BratislavaGoogle Scholar
  64. Mackensen A, Licari L (2004) Carbon isotopes of live benthic foraminifera from the South Atlantic: sensitivity to bottom water carbonate saturation state and organic matter rain rates. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late Quaternary: reconstruction of material budgets and current systems. Springer, Berlin, Heidelberg, New York, pp 623–644. CrossRefGoogle Scholar
  65. Mandic O, Sant K, Kallanxhi M-E, Ćorić S, Theobalt D, Grunert P, de Leeuw A, Krijgsman W (2019) Integrated bio-magnetostratigraphy of the Badenian reference section Ugljevik in southern Pannonian Basin - implications for the Paratethys history (middle Miocene, Central Europe). Glob Planet Chang 172:374–395. CrossRefGoogle Scholar
  66. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857. CrossRefGoogle Scholar
  67. Mikhalevich V, Debenay JP (2001) The main morphological trends in the development of the foraminiferal aperture and their taxonomic significance. J Micropalaeontol 20:13–28. CrossRefGoogle Scholar
  68. Miller KG, Fairbanks RG, Mountain GS (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:1–19. CrossRefGoogle Scholar
  69. Mount J (1985) Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology 32:435–442. CrossRefGoogle Scholar
  70. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  71. Murray JW (2014) Ecology and Palaeoecology of Benthic Foraminifera. Routledge, New York, USA, pp 398. Scholar
  72. Nebelsick JH, Rasser MW, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–217. CrossRefGoogle Scholar
  73. Nehyba S, Holcová K, Gedl P, Doláková N (2016) The Lower Badenian transgressive-regressive cycles—a case study from Oslavany (Carpathian Foredeep, Czech Republic). Neues Jahrb Geol P M 279:209–238. CrossRefGoogle Scholar
  74. Ondrejičková A (1978) Fazoistratotypus Chľaba by Štúrovo, Bohrung ŠO-1. In: Papp A, Cicha I, Seneš J, Steininger F. M-4 Badenien (Moravien, Wielicien, Kosovien). In: Papp A, Civha I, Seneš J (eds) M4 Badenian (Moravien, Wielicien, Kosovien). Vydavatel´stvo Slovenskej Akadémie vied VEDA, Bratislava, pp 173–175Google Scholar
  75. Papp A, Cicha I, Seneš J, Steininger F (1978) M-4 Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys VI. Vydavatel´stvo Slovenskej Akadémie vied VEDA, BratislavaGoogle Scholar
  76. Peryt D (2013) Foraminiferal record of marine transgression during deposition of the Middle Miocene Badenian evaporites in Central Paratethys (Borków section, Polish Carpathian Foredeep). Terra Nova 25:298–306. CrossRefGoogle Scholar
  77. Pezelj Đ, Mandic O, Ćorić S (2013) Paleoenvironmental dynamics in the southern Pannonian Basin during initial Middle Miocene marine flooding. Geol Carpath 64:81–100Google Scholar
  78. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  79. Planderová E 1978: Palynological Characteristics of the Badenian. In: Papp A, Cicha I, Seneš J (eds) M4 Badenian (Moravien, Wielicien, Kosovien). Vydavatel´stvo Slovenskej Akadémie vied VEDA, Bratislava, pp 565–589Google Scholar
  80. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kováč M (2004) Lithological-paleogeographic maps of Paratethys. 10 Maps Late Eocene to Pliocene. Cour Forsch Senck 250:1–46Google Scholar
  81. Poppe GT, Goto Y (1993) European Seashells. Vol. II (Scaphopoda, Bivalvia, Cephalopoda). Christa Hemmen Verlag, WiesbadenGoogle Scholar
  82. Reynolds L, Thunell RC (1985) Seasonal succession of planktonic foraminifera in the subpolar North Pacific. J Foramin Res 15:282–301. CrossRefGoogle Scholar
  83. Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratehys seaways (Oligocene to Miocene). Annal Naturhist Mus Wien 99A:279–310Google Scholar
  84. Russo B, Curcio E, Iaccarino S (2007) Paleoecology and paleoceanography of a Langhian succession (Tremiti Islands, southern Adriatic Sea, Italy) based on benthic foraminifera. B Soc Paleol Ital 46:107–124Google Scholar
  85. Rybár S, Halásová E, Hudáčková N, Kováč M, Kováčová M, Šarinová K, Šujan M (2015) Biostratigraphy, sedimentology and paleoenvironments of the northern Danube Basin: Ratkovce 1 well case study. Geol Carpath 66:51–67. CrossRefGoogle Scholar
  86. Savin SM, Douglas RG, Stehli FG (1975) Tertiary marine paleotemperatures. Geol Soc Am Bull 86:1499–1510.;2 CrossRefGoogle Scholar
  87. Scheiner F, Holcová K, Milovský R, Kuhner H (2018) Temperature and isotopic composition of seawater in the epicontinental sea (Central Paratethys) during the Middle Miocene Climate Transition based on Mg/Ca, δ18O and δ13C from foraminiferal tests. Palaeogeogr Palaeocl 495:60–71. CrossRefGoogle Scholar
  88. Schiebel R, Hemleben C (2005) Modern planktic foraminifera. Palaontol Z 79(1):135–148. CrossRefGoogle Scholar
  89. Schiebel R, Hemleben C (2017). Planktic foraminifers in the Modern Ocean. Springer-Verlag, Berlin, Heidelberg, pp 358. CrossRefGoogle Scholar
  90. Schiebel R, Bijma J, Hemleben C (1997) Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic. Deep Sea Res Part I 44(9–10):1701–1713. CrossRefGoogle Scholar
  91. Seneš J (1961) Paläogeographie des westkarpatischen raumes in beziehung zur übrigen Paratethys im Miozän. Geologické Práce 60:159–195Google Scholar
  92. Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281. Initial Rep Deep Sea 29:743–755. CrossRefGoogle Scholar
  93. Shahat WI (2017) Encrusting foraminifera from the Miocene reefs of Sinai, Egypt: a significant paleobiogeographic affiliation. Geo Res J 13:134–158. CrossRefGoogle Scholar
  94. Spiegler D, Spezzaferri S (2005) Bolboforma, an overview. Palaeontol Z 79:167–181. CrossRefGoogle Scholar
  95. Steininger F, Rögl F, Martini E (1976) Current Oligocene/Miocene biostratigraphic concept of the Central Paratethys (Middle Europe). Newsl Stratigr 4(3):174–202. CrossRefGoogle Scholar
  96. Tomek F, Žák J, Holub FV, Chlupáčová M, Verner K (2016) Growth of intra-caldera lava domes controlled by various modes of caldera collapse, the Štiavnica volcano–plutonic complex, Western Carpathians. J Volcanol Geoth Res 311:183–197. CrossRefGoogle Scholar
  97. van der Geest M, Sall AA, Ely SIO, Nauta RW, Gils JAV, Piersma T (2014) Nutritional and reproductive strategies in a chemsoymbiotic bivalve living in a tropical intertidal seagrass bed. Mar Ecol Progr Ser 501:113–126. CrossRefGoogle Scholar
  98. Vink A, Brune A, Höll Ch, Zonneveld KAF, Willems H (2002) On the response of calcareous dinoflagellates to oligotrophy and stratification of the upper water column in the equatorial Atlantic Ocean. Palaeogeogr Palaeocl 178:53–66. CrossRefGoogle Scholar
  99. Wade BS, Bown PR (2006) Calcareous nannofossils in extreme environments: the Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeogr Palaeocl 233:271–286. CrossRefGoogle Scholar
  100. Welle J (1998) Oligozäne Mollusken aus dem Schacht 8 der Bergwerksgesellschaft Sophia Jacoba bei Erkelenz (Niederrheinische Bucht) Teil 3: Paläoökologie. Munst Forsch Geol Palaeont 85:43–136Google Scholar
  101. Wells P, Okada H (1997) Response of nannoplankton to major changes in seasurface temperature and movements of hydrological fronts over site DSDP 594 (south Chatham Rise, southeastern New Zealand), during the last 130 kyr. Mar Micropalaeontol 32:341–363CrossRefGoogle Scholar
  102. Willmann R (1989) Muscheln und Schnecken der Nord- und Ostsee. Neumann-Neidamm, MelsungenGoogle Scholar
  103. Woelkerling WJ (1988) The coralline red algae: an analysis of the genera and subfamilies of nongeniculate corallinaceae. British Museum (Natural History) and Oxford University Press, London and OxfordGoogle Scholar
  104. Woelkerling WJ, Campbell SJ, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293. CrossRefGoogle Scholar
  105. Wright VP (1992) A revised classification of limestones. Sediment Geol 76:177–185. CrossRefGoogle Scholar
  106. Zágoršek K, Holcová K, Trasoň T (2007) Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravia part of the Carpathian Foredeep. Int J Earth Sci 97:835–850. CrossRefGoogle Scholar
  107. Ziveri P, Baumann K-H, Böckel B, Bollmann J, Young J (2004) Biogeography of selected Holocene coccoliths in the Atlantic Ocean. In: Theirstein HR, Young JR (eds) Coccolithophores from molecular processes to global impact. Springer Verlag, Berlin, pp 403–428. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geology and PaleontologyCharles UniversityPrague 2Czech Republic
  2. 2.National MuseumPrague 1Czech Republic
  3. 3.State Geological Institute of Dionýz ŠtúrBratislava 11Slovakia
  4. 4.Earth Sciences Institute of the Slovak Academy of SciencesBratislavaSlovakia
  5. 5.Earth Sciences Institute of the Slovak Academy of SciencesBanská BystricaSlovakia
  6. 6.Institute of GeologyAcademy of Sciences of the Czech RepublicPrague 6 LysolajeCzech Republic

Personalised recommendations