Advertisement

Facies

, 65:10 | Cite as

Study of the bioerosion of Phoenician elephant tusks from the shipwreck of Bajo de la Campana: lots of hypotheses, few certainties

  • Federica AntonelliEmail author
  • Sandra Ricci
  • Barbara Davidde Petriaggi
  • Milagros Buendía Ortuño
Original Article
  • 40 Downloads
Part of the following topical collections:
  1. Bioerosion: An interdisciplinary approach

Abstract

The shipwreck of Bajo de la Campana (VII–VI century B.C.) was a Phoenician merchant ship accidentally discovered in the 1950s off the coasts of the Murcia region (Spain). Sixty-four elephant tusks were part of the cargo. Some of them were recovered by archaeologists between 2007 and 2011 and are now stored in the restoration laboratory of the National Museum of Underwater Archaeology (ARQVA) of Cartagena. This study investigated the bioerosion traces present on 12 selected tusks in order to hypothesize which marine or terrestrial macroborers could have attacked this substrate. No work has previously looked at the biological degradation of this material. Taking into account the mineral composition of ivory, the hypothesized bioeroders were selected from those reported in the literature as bioeroders of rocks or other hard substrates (bones, corals, shells, etc.). The hypothesized biodeteriogens belongs to several groups of marine invertebrates (echinoids, barnacles, molluscs, sponges, polychaetes, and bryozoans) and terrestrial insects. Unfortunately, the absence of parts of the bioeroders’ body or of skeletal elements inside the studied traces did not allow definitive identification, so the attributions remain hypotheses. However, this study could be considered a starting point for an interesting debate and for future investigations on the bioerosion of this precious material.

Keywords

Archaeological ivory Marine macroborers Boring insects Ichnotaxa 

Notes

Acknowledgements

We would like to thank Iván Negueruela Martínez, Director of the National Museum of Underwater Archaeology (ARQVA), who gave us the opportunity to study these wonderful remains and who encouraged us during our stay in Cartagena. We are grateful to Juan Pinedo and Mark Polzer for giving us the authorization to publish the pictures related to the archeological site. We would also like to thank Christine Schoenberg for her interesting comments concerning the possible bioerosion by sponges, and Alfred Uchman for his important suggestion on the bioerosive role of insects.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Albéric M (2014) Etude chimique et structurale de l’ivoire d’éléphant moderne et ancien. Université Pierre et Marie Curie—Paris VIGoogle Scholar
  2. Albéric M, Gourrier A, Müller K et al (2014) Early diagenesis of elephant tusk in marine environment. Palaeogeogr Palaeoclimatol Palaeoecol 416:120–132CrossRefGoogle Scholar
  3. Albéric M, Dean MN, Gourrier A et al (2017) Relation between the macroscopic pattern of elephant ivory and its three-dimensional micro-tubular network. PLoS One 12:e0166671CrossRefGoogle Scholar
  4. Asgaard U, Bromley RG (2008) Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 279–303CrossRefGoogle Scholar
  5. Barbosa SS, Byrne M, Kelaher BP (2008) Bioerosion caused by foraging of the tropical chiton Acanthopleura gemmata at One Tree Reef, southern Great Barrier Reef. Coral Reefs 27:635–639.  https://doi.org/10.1007/s00338-008-0369-4 CrossRefGoogle Scholar
  6. Bavestrello G, Calcinai B, Cerrano C, Sarà M (1997) Delectona madreporica n. sp. (Porifera, Demospongiae) boring the corallites of some scleractinians from the Ligurian Sea. Ital J Zool 64:273–277.  https://doi.org/10.1080/11250009709356208 CrossRefGoogle Scholar
  7. Belaústegui Z, Muñiz F, Nebelsick JH, Domènech R, Martinell J (2017) Echinoderm ichnology: bioturbation, bioerosion and related processes. J Paleontol 91(4):643–661CrossRefGoogle Scholar
  8. Bethencourt M, Tomas FM, Izquierdo A (2014) ARQUEOMONITOR: Contribución de las condiciones físicas, químicas y biológicas en el deterioro y salvaguarda del Patrimonio Cultural Subacuático Influencia sobre las velocidades de corrosión en la artillería de dos pecios asociados a la Batalla de Trafalga. In: Actas del I Congreso de Arqueología Náutica y Subacuática Española. Volumen 2. p 331–342Google Scholar
  9. Borchiellini C, Alivon E, Vacelet J (2004) The systematic position of Alectona (Porifera, Demospongiae): a tetractinellid sponge. Boll dei Musei e degli Ist Biol dell’Università di Genova 68:209–217Google Scholar
  10. Botquelen A, Mayoral E (2005) Early Devonian bioerosion in the Rade de Brest, Armorican Massif, France. Palaeontology 48:1057–1064.  https://doi.org/10.1111/j.1475-4983.2005.00492.x CrossRefGoogle Scholar
  11. Britt BB, Scheetz RD, Dangerfield A (2008) A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 15:59–71.  https://doi.org/10.1080/10420940701193284 CrossRefGoogle Scholar
  12. Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23:169–197CrossRefGoogle Scholar
  13. Bromley RG, Hanken NM, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Denmark 38:85–99Google Scholar
  14. Buatois LA, Wisshak M, Wilson MA, Mángano MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci Rev 164:102–181CrossRefGoogle Scholar
  15. Buendia Ortuño M (2016) La conservación del marfil de procedencia subacuática: las defensas de elefante del Bajo de la campana (San Javier, Murcia) del Museo Nacional de Arqueología SubacuáticaGoogle Scholar
  16. Calcinai B, Bavestrello G, Cerrano C (2004) Bioerosion micro-patterns as diagnostic characteristics in boring sponges. BMIB-Bollettino dei Musei e degli Ist Biol dell’Università di Genova 68:229–238Google Scholar
  17. Calcinai B, Bavestrello G, Cerrano C, Gaggero L (2008) Substratum microtexture affects the boring pattern of Cliona albimarginata (Clionaidae, Demospongiae). In: Current developments in bioerosion. Springer, Berlin, p 203–211Google Scholar
  18. Casadío S, Mrenssp SA, Santillana SN (2001) Endolithic bioerosion traces attributed to boring bryozoans. Ameghiniana 38:321–329Google Scholar
  19. de Gibert JM, Domènech R, Martinell J (2007) Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro) bioerosion ichnofacies model. Acta Palaeontol Pol 52:783–798Google Scholar
  20. Doménech-Carbó M, Buendía-Ortuño M, Pasies-Oviedo T, Osete-Cortina L (2016) Analytical study of waterlogged ivory from the Bajo de la Campana site (Murcia, Spain). Microchem J 126:381–405CrossRefGoogle Scholar
  21. Espinoza EO, Mann M-J (1993) The history and significance of the Schreger pattern in proboscidean ivory characterization. J Am Inst Conserv 32:241–248.  https://doi.org/10.1179/019713693806124866 CrossRefGoogle Scholar
  22. Espinoza E, Mann M, Goddard K (1992) Identification guide for ivory and ivory substitutes. WWF—World Wide FundGoogle Scholar
  23. Forrest RE, Chapman MG, Underwood AJ (2001) Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J Exp Mar Bio Ecol 258:155–171CrossRefGoogle Scholar
  24. Genise JF (2016) Ichnoentomology. Insect traces in soils and paleosols. Springer, BerlinGoogle Scholar
  25. Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, The Netherlands, pp 67–97CrossRefGoogle Scholar
  26. Godfrey IM, Ghisalberti EL, Beng EW et al (2002) The analysis of ivory from a marine environment. Stud Conserv 47:29–45.  https://doi.org/10.1179/sic.2002.47.1.29 CrossRefGoogle Scholar
  27. Hanken NM, Uchman A, Jakobsen SL (2012) Late Pleistocene-early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: an example from the Basissletta area. Boreas 41:42–55.  https://doi.org/10.1111/j.1502-3885.2011.00223.x CrossRefGoogle Scholar
  28. Höpner S, Bertling M (2017) Holes in bones: ichnotaxonomy of bone borings. Ichnos 24:259–282.  https://doi.org/10.1080/10420940.2017.1289937 CrossRefGoogle Scholar
  29. Huchet JB (2014) Insect remains and their traces: relevant fossil witnesses in the reconstruction of past funerary practices. Anthropologie 52:329–346Google Scholar
  30. Huchet JB, Le Mort F, Rabinovich R et al (2013) Identification of dermestid pupal chambers on Southern Levant human bones: inference for reconstruction of Middle Bronze Age mortuary practices. J Archaeol Sci 40:3793–3803CrossRefGoogle Scholar
  31. Hutchings P (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 249–264CrossRefGoogle Scholar
  32. Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Bio Ecol 269:101–121CrossRefGoogle Scholar
  33. Jacinto D, Cruz T (2012) Paracentrotus lividus (Echinodermata: Echinoidea) attachment force and burrowing behavior in rocky shores of SW Portugal. Zoosymposia 7:231–240Google Scholar
  34. Kázmér M, Taborosi D (2012) Bioerosion on the small scale–examples from the tropical and subtropical littoral. Hantkeniana 7:37–94Google Scholar
  35. Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98.  https://doi.org/10.1007/BF00300767 CrossRefGoogle Scholar
  36. Locke M (2008) Structure of ivory. J Morphol 269:269–423CrossRefGoogle Scholar
  37. Mas García J (1987) El marfil en la Antigüedad: seguimiento de sus manufacturas hasta el sureste ibérico. Murgetana 72:5–108Google Scholar
  38. Mayoral E (1988) Pennatichnus nov. icnogen.; Pinaceocladichnus nov. icnogen. E. Iramena; huellas de bioerosion debidas a Bryozoa perforantes (Ctenostomata. Plioceno. Rev Española Paleontol 3:13–22Google Scholar
  39. Mederos A, Ruiz Cabrero LA (2004) El pecio fenicio del Bajo de la Campana (Murcia, España) y el comercio del marfil norteafricano. Zephyrus 57:263–281Google Scholar
  40. Mikuláš R, Pek I (1996) Borings in the oyster shells from the Badenian at Česká Třebová and its neighbourhood (Eastern Bohemia, Czech Republic). J Geosci 41:97–100Google Scholar
  41. Moen FE, Svensen E (2004) Marine fish & invertebrates of Northern Europe. AquaPress, Southend-On-Sea, EssexGoogle Scholar
  42. Odes EJ, Parkinson AH, Randolph-Quinney PS et al (2017) Osteopathology and insect traces in the Australopithecus africanus skeleton StW 431. S Afr J Sci 113:1–7.  https://doi.org/10.17159/sajs.2017/20160143 CrossRefGoogle Scholar
  43. Otter GW (1932) Rock-burrowing echinoids. Biol Rev 7:89–107.  https://doi.org/10.1111/j.1469-185X.1962.tb01037.x CrossRefGoogle Scholar
  44. Paes Neto VD, Parkinson AH, Pretto FA et al (2016) Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 453:30–41CrossRefGoogle Scholar
  45. Pinedo Reyes J (2013) Investigaciones arqueológicas subacuáticas en el Bajo de la Campana 2007-2011. San Javier (Murcia). In: Prieto XN, Pernía AR (eds) I Congreso de Arqueología Náutica y Subacuática Española, Cartagena 14, 15 y 16 de Marzo de 2013. Ministerio de Educación, Cultura y Deporte, Madrid, pp 16–25Google Scholar
  46. Pinedo Reyes J, Polzer ME (2012) El yacimiento subacuático del Bajo de la Campana. Actas de las Jornadas de ARQUA 2011. Ministerio de Educación, Cultura y Deporte, Madrid, pp 90–95Google Scholar
  47. Pohowsky RA (1974) Notes on the study and nomenclature of boring Bryozoa. J Paleontol 48:556–564Google Scholar
  48. Pokines JT, Higgs N (2015) Macroscopic taphonomic alterations to human bone recovered from marine environments. J Forensic Identificat 65:953–984Google Scholar
  49. Polzer ME (2014) The Bajo de la Campana shipwreck and colonial trade in Phoenician Spain. In: Aruz J, Graff SB, Rakic Y (eds) Assyria to Iberia at the dawn of the Classical Age. The Metropolitan Museum of Art, New York, pp 230–242Google Scholar
  50. Reyes Y, Córdova C, Romero L, Paredes C (2001) Marcas radulares producidas por gasterópodos pastoreadores del intermareal rocoso. Rev Peru Biol 8:38–44Google Scholar
  51. Ricci S, Sacco Perasso C, Antonelli F, Davidde Petriaggi B (2015) Marine bivalves colonizing Roman artefacts recovered in the Gulf of Pozzuoli and in the Blue Grotto in Capri (Naples, Italy): boring and nestling species. Int Biodeterior Biodegrad.  https://doi.org/10.1016/j.ibiod.2014.12.001 CrossRefGoogle Scholar
  52. Roberts EM, Rogers RR, Foreman BZ (2007) Continental insect borings in dinosaur bone: examples from the Late Cretaceous of Madagascar and Utah. J Paleontol 81:201–208CrossRefGoogle Scholar
  53. Rosell D, Uriz MJ (2002) Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org Divers Evol 2:55–86CrossRefGoogle Scholar
  54. Rosso A (2008) Leptichnus tortus isp. nov., a new cheilostome etching and comments on other bryozoan-produced trace fossils. Stud Trentini di Sci Nat Acta Geol 83:75–85Google Scholar
  55. Sanmartin Ascaso J (1986) Inscripciones fenicio-púnicas del Sureste hispánico (1). In: Los fenicios en la Península Ibérica, vol. II. Sabadell, pp 90–91Google Scholar
  56. Saunders J (1979) A close look at ivory. Living Mus 41:56–59Google Scholar
  57. Schönberg CHL, Beuck L (2007) Where Topsent went wrong: Aka infesta aka Aka labyrinthica (Demospongiae: Phloeodictyidae) and implications for other Aka spp. J Mar Biol Assoc UK 87:1459–1476CrossRefGoogle Scholar
  58. Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151.  https://doi.org/10.1007/BF00300974 CrossRefGoogle Scholar
  59. Taylor PD, Wilson MA, Bromley RG (1999) a new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology 42:595–604.  https://doi.org/10.1111/1475-4983.00087 CrossRefGoogle Scholar
  60. Taylor PD, Wilson MA, Bromley RG (2013) Finichnus, a new name for the ichnogenus Leptichnus Taylor, Wilson and Bromley, 1999, preoccupied by Leptichnus Simroth, 1896 (Mollusca, Gastropoda). Palaeontology 56:456CrossRefGoogle Scholar
  61. Thompson RC, Johnson LE, Hawkins SJ (1997) A method for spatial and temporal assessment of gastropod grazing intensity in the field: the use of radula scrapes on wax surfaces. J Exp Mar Bio Ecol 218:63–67CrossRefGoogle Scholar
  62. Vinn O, Wilson MA, Mõtus M-A (2014) The earliest giant Osprioneides borings from the Sandbian (Late Ordovician) of Estonia. PLoS One 9:e99455.  https://doi.org/10.1371/journal.pone.0099455 CrossRefGoogle Scholar
  63. Virág A (2012) Histogenesis of the unique morphology of proboscidean ivory. J Morphol 273:1406–1423CrossRefGoogle Scholar
  64. Viskova LA, Pakhnevich AV (2010) A new boring bryozoan from the Middle Jurassic of the Moscow Region and its micro-CT research. Paleontol J 44:157–167.  https://doi.org/10.1134/S0031030110020073 CrossRefGoogle Scholar
  65. Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift 39:193–211.  https://doi.org/10.1007/BF02990164 CrossRefGoogle Scholar
  66. Voigt E, Soule JD (1973) Cretaceous burrowing bryozoans. J Paleontol 47:21–33Google Scholar
  67. Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Springer, BerlinGoogle Scholar
  68. Wisshak M, Tribollet A, Golubic S et al (2011) Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9:492–520.  https://doi.org/10.1111/j.1472-4669.2011.00299.x CrossRefGoogle Scholar
  69. Zottoli RA, Carriker MR (1974) Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaete Polydora websteri. Mar Biol 27:307–316.  https://doi.org/10.1007/BF00394366 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Innovation of Biological Systems, Food and Forestry (DIBAF)Tuscia UniversityViterboItaly
  2. 2.Biology LaboratoryISCR, Istituto Superiore per la Conservazione e il RestauroRomeItaly
  3. 3.Underwater Archaeological Operations UnitISCR, Istituto Superiore per la Conservazione ed il RestauroRomeItaly
  4. 4.Conservation-Restoration areaARQVA, Museo Nacional de Arqueología SubacuáticaCartagenaSpain

Personalised recommendations