, 65:5 | Cite as

Bioerosion structures in a Late Cretaceous mosasaur from Antarctica

  • Marianella TaleviEmail author
  • Soledad Brezina
Original Article
Part of the following topical collections:
  1. Bioerosion: An interdisciplinary approach


Bioerosive structures in the cortical region of a vertebra from a mosasaur fall in the López de Bertodano Formation (Upper Maastrichtian) in Seymour Island (Isla Marambio), Antarctica, are reported. The traces studied are similar but not coincident with the described microborings in other fossil bone remains. The morphology and extension of these bioerosive structures are considered as the result of the activity of endolithic organisms on the original vascular channels of the bone. They are approximately straight, anastomosed, and commonly filled with an opaque mineral and framboidal pyrite. As most of the bone structure is well preserved, only the small portion of the cortical region was exposed to the microorganisms’ activity. This would mean that the mosasaur individual died well earlier than the burial event. This is their first report of this type of bioerosive structures in a mosasaur fall.


Bioerosive structures Marine reptile Cretaceous Antarctica 



The authors thank M. Tunik and M. Fernández for their assistance, the IAA (Instituto Antártico Argentino) and Fuerza Aérea Argentina for support in the field, M. Reguero for allowing the study of the material. This research was financially supported by grants from Agencia de Promoción Científica y Tecnológica (ANCyT) (PICT 2016-1039), Universidad Nacional de Río Negro PI UNRN 40-A-585, PI UNRN 40-A-660 and Programa de Incentivos de la Universidad Nacional de La Plata.


  1. Amano K, Little CTS (2005) Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr Palaeoclimatol Palaeoecol 215:345–356CrossRefGoogle Scholar
  2. Chinsamy A, Raath MA (1992) Preparation of fossil bone for histological examination. Palaeontol Afr 29:39–44Google Scholar
  3. Danise S, Higgs ND (2015) Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biol Lett 11:20150072CrossRefGoogle Scholar
  4. Danise S, Cavalazzi B, Dominici S, Westall F, Monechi S, Guioli S (2012) Evidence of microbial activity from a shallow-water whale fall (Voghera, northern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 317–318:13–26CrossRefGoogle Scholar
  5. Danise S, Twitchett RT, Matts K (2014) Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nat Commun 5:4789. CrossRefGoogle Scholar
  6. Davis PG (1997) The bioerosion of bird bones. Int J Osteoarchaeol 7:388–401CrossRefGoogle Scholar
  7. Elliot DH, Askin RA, Kyte FT, Zinsmeister WJ (1994) Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: implications for the KT event. Geology 22:675–678CrossRefGoogle Scholar
  8. Glaub I (1999) Paleobathymetric reconstructions and fossil microborings. Bull Geol Soc Den 45:143–146Google Scholar
  9. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478Google Scholar
  10. Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235CrossRefGoogle Scholar
  11. Higgs ND, Little CTS, Glover AG (2011) Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology. Proc R Soc B Biol Sci 278:9–17CrossRefGoogle Scholar
  12. Höpner S, Bertling M (2017) Holes in bones: ichnotaxonomy of bone borings. Ichnos 24:259–282CrossRefGoogle Scholar
  13. Jans MA (2008) Microbial bioerosion of bone: a review. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 397–413CrossRefGoogle Scholar
  14. Kaim A, Kobayashi Y, Echizenya H, Jenkins RG, Tanabe K (2008) Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontol Pol 53:97–104CrossRefGoogle Scholar
  15. Kiel S (2008) Fossil evidence for micro- and macrofaunal utilization of large nekton falls: examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeogr Palaeoclimatol Palaeoecol 267:161–174CrossRefGoogle Scholar
  16. Liebenau K, Kiel S, Vardeh D, Treude T, Thiel V (2015) A quantitative study of the degradation of whale bone lipids: implications for the preservation of fatty acids in marine sediments. Org Geochem 89–90:23–30CrossRefGoogle Scholar
  17. Macellari CE (1988) Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. Geol Soc Am Mem 169:25–54Google Scholar
  18. Martill DM (1989) Fungal borings in neoselachian teeth from the Lower Oxford Clay of Peterborough. Mercian Geol 12:1–4Google Scholar
  19. McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26CrossRefGoogle Scholar
  20. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  21. Olivero EB (2012) Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretac Res 34:348–366CrossRefGoogle Scholar
  22. Olivero EB, Ponce JJ, Martinioni DR (2008) Sedimentology and architecture of sharp-based tidal sandstones in the Upper Marambio Group, Maastrichtian of Antarctica. Sediment Geol 210:11–26CrossRefGoogle Scholar
  23. Pfretzschner HU (2001) Pyrite in fossil bone. N Jb Geol Paläont Abh 220:1–23CrossRefGoogle Scholar
  24. Roux W (1887) Über eine im Knochen lebende Gruppe von Fadenpilzen (Mycelites ossifragus). Z Wiss Zool Abt A 45:227–254Google Scholar
  25. Schoepfer SD, Tobin TS, Witts JD, Newton RJ (2017) Intermittent euxinia in the high-latitude James Ross Basin during the latest Cretaceous and earliest Paleocene. Palaeogeogr Palaeoclimatol Palaeoecol 477:40–54CrossRefGoogle Scholar
  26. Shapiro RS, Spangler E (2009) Bacterial fossil record in whale-falls: petrographic evidence of microbial sulfate reduction. Palaeogeogr Palaeoclimatol Palaeoecol 274:196–203CrossRefGoogle Scholar
  27. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354Google Scholar
  28. Trueman CN, Martill DM (2002) The long-term survival of bone: the role of bioerosion. Archaeometry 44:371–382CrossRefGoogle Scholar
  29. Turner-Walker G, Jans M (2008) Reconstructing taphonomic histories using histological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:227–235CrossRefGoogle Scholar
  30. Wedl C (1864) Üeber einen im Zahnbein und Knochen keimenden Pilz. Sber Kais Akad Wiss Wein, Math-nat CL, Abt 1(50):171–193Google Scholar
  31. Wisshak M, Tapanila L (eds) (2008) Current developments in bioerosion. Springer, BerlinGoogle Scholar
  32. Zinsmeister WJ (1998) Discovery of fish mortality horizon at the KT boundary on Seymour Island: re-evaluation of events at the end of the Cretaceous. J Paleontol 72:556–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigación en Paleobiología y Geología CONICET-Universidad Nacional de Río NegroGeneral RocaArgentina

Personalised recommendations