, 65:4 | Cite as

Middle Miocene carbonate facies with rhodoliths from the NW Transylvanian Basin (Vălenii Șomcutei Cave, Romania)

  • Ramona ChelaruEmail author
  • Emanoil Săsăran
  • Tudor Tămaș
  • Ramona Bălc
  • Ioan I. Bucur
  • George Pleș
Original Article


The middle Miocene carbonates from the NW part of the Transylvanian Basin are represented mainly by rhodalgal facies. This paper provides an accurate taxonomic account of the red algal assemblages, facies analysis, and paleoenvironmental interpretation of the Badenian deposits outcropping in Vălenii Șomcutei area. A total of 13 red algal species belonging to the orders Corallinales, Hapalidiales, Sporolithales, and Peyssonneliales have been identified. The microfacies distinguished in the succession (bio-extraclastic grainstone, oolitic packstone/grainstone, bio-extraclastic packstone/grainstone, rhodolith rudstone, coralline algal rudstone, and coralline algal debris grainstone) suggest a general shallowing-upward succession, from an open-marine middle-outer ramp setting to an inner-ramp environment.


Miocene Microfacies Rhodophyta Rhodoliths Nannofossils Paleoenvironment 



We are grateful to C.S. Montana Baia Mare for sampling permission at the Vălenii Șomcutei Cave and to Attila S. Kovecsi and Iuliana Vișan for assistance during fieldwork. Ramona Bălc thanks the CNCSIS-UEFISCSU, project PN-III-P3-3.6-H2020-2016-0015 for the financial support.


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–42Google Scholar
  2. Auer G, Piller WE, Harzhauser M (2014) High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene. Mar Micropaleontol 111:53–65CrossRefGoogle Scholar
  3. Ballesteros E, Afonso-Carrillo J (1995) Species records and distribution of shallow-water coralline algae in a western Indian Ocean coral reef (Trou d’Eau Douce, Mauritius). Bot Mar 38:203–213CrossRefGoogle Scholar
  4. Bassi D, Nebelsick JH, Checconi A, Hohenneger J, Iryu Y (2009) Present-day and fossil rhodolith pavements compared: their potential for analyzing shallow-water carbonate deposits. Sediment Geol 214:74–84CrossRefGoogle Scholar
  5. Bassi D, Iryu Y, Nebelsick JH (2012a) To be or not to be a fossil rhodolith? Analytical methods for studying fossil rhodolith deposits. J Coastal Res 28(1):288–295CrossRefGoogle Scholar
  6. Bassi D, Iryu Y, Humblet M, Matsuda H, Machiyama H, Sasaki K, Matsuda S, Arai K, Inoue T (2012b) Recent macroids on the Kikai-Jima Shelf, Central Ryukyu Islands, Japan. Sedimentology 59(7):2024–2041CrossRefGoogle Scholar
  7. Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the palaeoecology of a temperate sea. Palaeogeogr Palaeoclimatol Palaeoecol 137:173–187CrossRefGoogle Scholar
  8. Basso D, Fravega P, Vannucci G (1996) Fossil and living corallinaceans related to the Mediterranean endemic species Lithophyllum racemus (LAMARCK) FOSLIE. Facies 35:275–292CrossRefGoogle Scholar
  9. Basso D, Vrsaljko D, Grgasović T (2008) The coralline flora of a Miocene maërl: the Croatian “Litavac”. Geologica Croatica 61(2–3):333–340Google Scholar
  10. Basso D, Quaranta F, Vannucci G, Piazza M (2012) Quantification of the coralline carbonate from a Serravallian rhodolith bed of the Tertiary Piedmont Basin (Stazzano, Alessandria, NW Italy). Geodiversitas 34(1):137–149CrossRefGoogle Scholar
  11. Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg, pp 217–224CrossRefGoogle Scholar
  12. Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths—a review. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg, pp 225–242CrossRefGoogle Scholar
  13. Bown PR, Young JR (1998) Techniques. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Kluwer, Dordrecht, pp 16–28CrossRefGoogle Scholar
  14. Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36(3):535–547Google Scholar
  15. Bressan G, Babbini L (2001) Marine biodiversity of Italian coast: corallinales of the Mediterranean Sea: guide to the identification. Biologia Marina Mediterranea 10:235–237Google Scholar
  16. Bucur II, Filipescu S (1994) Middle Miocene red algae from the Transylvanian Basin (Romania). Beiträge zur Paläontologie 19:39–47Google Scholar
  17. Bucur II, Nicorici E, Huică I, Ionesi B (1992) Calcareous microfaciesin the sarmatian deposits from Romania. Studia Universitatis Babeş-Bolyai, Geologia 37(2):9–16Google Scholar
  18. Bucur II, Nicorici E, Șuraru N (1993) Sarmatian calcareous algae from Rumania. Studies on fossil benthic algae. Bollettino della Società Paleontologica Italiana, Special 1:81–91Google Scholar
  19. Checconi A, Bassi D, Passeri L, Rettori R (2007) Coralline red algal assemblage from the Middle Pliocene shallow-water temperate carbonates of the Monte Cetona (Northern Apennines, Italy). Facies 53:57–66CrossRefGoogle Scholar
  20. Checconi A, Bassi D, Carannante G, Monaco P (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vituano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sediment Geol 225(1–2):50–66CrossRefGoogle Scholar
  21. Chelaru R, Bucur II (2016) The taxonomy of middle Miocene red algae from the Gârbova de Sus Formation (Transylvanian Basin, Romania). Carnets de Geologie 16(11):307–336Google Scholar
  22. Coletti G, Bracchi VA, Marchese F, Basso D, Savini A, Vertino A, Corselli C (2018) Quaternary build-ups and rhodalgal carbonates along the Adriatic and Ionian coasts of the Italian Peninsula: a review. Rivista Italiana di Paleontologia e Stratigrafia 124(2):387–406Google Scholar
  23. Cornée JJ, Moissette P, Saint Martin JP, Kázmérs M, Tóths E, Görös Á, Dulai A, Müller P (2009) Marine carbonate systems in the Sarmatian (Middle Miocene) of the Central Paratethys: the Zsámbék Basin of Hungary. Sedimentology 56:1728–1750CrossRefGoogle Scholar
  24. Daoud H, Bucur II, Bruchental C (2006) Microbialitic structures in the Sarmatian carbonate deposits from Șimleu Basin, Romania. Studia Universitatis Babeş-Bolyai, Geologia 51(1–2):3–13CrossRefGoogle Scholar
  25. De Leeuw A, Bukowski K, Krijgsman W, Kuiper KF (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 38(8):715–718CrossRefGoogle Scholar
  26. De Leeuw A, Filipescu S, Mațenco L, Krijgsman W, Kuiper K, Stoica M (2013) Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): implications for Central Paratethys stratigraphy and emplacement of the Tisza–Dacia plate. Glob Planet Change 103:82–98CrossRefGoogle Scholar
  27. Doláková N, Brzobohatý R, Hladilová Š, Nehyba S (2008) The red-algal facies of the Lower Badenian limestones of the Carpathian Foredeep in Moravia (Czech Republic). Geol Carpath 59(2):133–146Google Scholar
  28. Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecologic zones. Geologische Rundschau 61:672–686CrossRefGoogle Scholar
  29. Filipescu S (2001) Wielician foraminifera at the western border of the Transylvanian Basin. Studia Universitatis Babeş-Bolyai, Geologia 46(2):115–123CrossRefGoogle Scholar
  30. Filipescu S, Gîrbacea R (1997) Stratigraphic remarks on the Middle Miocene deposits from Gârbova de Sus (Transylvanian Basin, Romania). Studia Universitatis Babeş-Bolyai, Geologia 41:275–286Google Scholar
  31. Filipescu S, Silye L, Krézsek C (2005) Sarmatian micropaleontological assemblages and sedimentary paleonvironments in the southern Transylvanian Basin. Acta Palaeontologica Romaniae 5:173–179Google Scholar
  32. Filipescu S, Wanek F, Miclea A, De Leeuw A, Vasiliev I (2011) Micropaleontological response to the changing paleoenvironment across the Sarmatian-Pannonian boundary in the Transylvanian Basin (Miocene, Oarba de Mureș section, Romania). Geologica Carpathica 62(1):91–102CrossRefGoogle Scholar
  33. Flügel E (2004) Microfacies of carbonate rocks—analysis, interpretation and application. Springer, Berlin, p 976CrossRefGoogle Scholar
  34. Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984CrossRefGoogle Scholar
  35. Ghiurcă V (1969) Geology of the Baia Mare Neogene Basin. Unpublished PhD Thesis, University of Bucharest, Romania, p 397 (in Romanian)Google Scholar
  36. Ghiușcă D, Rădulescu D, Gherasi N (1967) Geological map of Romania, scale 1:200,000, Baia Mare Sheet. Romanian Geological Institute, Bucharest (in Romanian) Google Scholar
  37. Giaccone T, Giaccone G, Basso D, Bressan G (2009) Algae. In: Relini G (ed) Italian Habitats: marine bioconstructions, nature’s architectural seascapes. Italian Ministry of the Environment and Territorial Protection, Friuli Museum of Natural History, Udine, p 29–47Google Scholar
  38. Haq BU (1980) Biogeographic history of Miocene calcareous nannoplankton and paleoceanography of the Atlantic Ocean. Micropaleontology 26(4):414–443CrossRefGoogle Scholar
  39. Harvey AS, Broadwater ST, Woelkerling WJ, Mitrovski PJ (2003) Choreonema (Corallinales, Rhodophyta): 18S rDNA Phylogeny and resurrection of the Hapalidiaceae for the subfamily Choreonematoideae, Austrolithoideae, and Melobesioideae. J Phycol 39(5):988–998CrossRefGoogle Scholar
  40. Harzhauser M, Piller WE (2004) Integrated stratigraphy of the sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1:65–86Google Scholar
  41. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31CrossRefGoogle Scholar
  42. Hohenegger J, Ćorić S, Wagreich M (2014) Timing of the Middle Miocene Badenian stage of the Central Paratethys. Geol Carpath 65(1):55–66CrossRefGoogle Scholar
  43. Istvan D (1982) The karst from Vălenii Șomcutei (Someș Plateau). Carst—Anuarul clubului de speologie, vol 2. Cepromin, Cluj-Napoca, pp 61–67 (in Romanian) Google Scholar
  44. Kaewsuralikhit C, Maneekat S, Noiraksa T, Patarajinda S, Baba M (2012) First records of Sporolithon ptychoides Heydrich (Sporolithales, Corallinophycidae, Rhodophyta) from Thailand. Cryptogamie Algologie 33(3):265–276CrossRefGoogle Scholar
  45. Kameo K, Sato T (2000) Biogeography of Neogene calcareous nannofossils in the Caribbean and the eastern equatorial Pacific—floral response to the emergence of the Isthmus of Panama. Mar Micropaleontol 39(1–4):210–218Google Scholar
  46. Kato A, Baba M, Suda S (2011) Revision of the Mastophoroideae (Corallinales, Rhodophyta) and polyphyly in non-geniculate species widely distributed on pacific coral reefs. J Phycol 47(3):662–672CrossRefGoogle Scholar
  47. Kováč M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva L, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica 58(6):579–606Google Scholar
  48. Krayesky DM, Norris JN, Gabrielson PW, Gabriela D, Fredericq S (2009) A new order of red algae based on the Peyssonneliaceae, with an evaluation of the ordinal classification of the Florideophyceae (Rhodophyta). Proc Biol Soc Wash 122:364–391CrossRefGoogle Scholar
  49. Le Gall L, Payri CE, Bittner CE, Saunders GW (2009) Multigene polygenetic analyses support recognition of the Sporolithales ord. nov. Mol Phylogenet Evol 54(1):302–305CrossRefGoogle Scholar
  50. Macovei GI (1997) The Tertiary stratigraphy between Preluca massif and the Baia Mare Neogene eruptive. Unpublished PhD thesis, Babeș-Bolyai University, Cluj Napoca, 173 p., 28 (in Romanian)Google Scholar
  51. Martini E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonations. In: Farinacci A (ed) Proceedings of the 2nd International Conference on Planktonic Microfossils Roma 1970, vol 2. Tecnoscienza, Roma, pp 739–785Google Scholar
  52. Mészáros N (1991) Nannoplankton zones in the Miocene deposits of the Transylvanian Basin. In: INA Newsletter, 4th INA Conference, Prague, Abstracts, London, pp 59–60Google Scholar
  53. Nebelsick JH, Bassi D (2000) Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions, vol 178. Geological Society of London, Special Publication, London, pp 89–107Google Scholar
  54. Nelson WA, Sutherland JE, Farr TJ, Hart DR, Neill KF, Kim HJ, Yoon HS (2015) Multigene analyses of New Zealand coralline algae: Corallinapetra novaezelandiae gen. et sp. nov. and recognition of the Hapalidiales ord. nov. J Phycol 51(3):454–468CrossRefGoogle Scholar
  55. Nitsch F, Nebelsick J, Bassi D (2015) Constructional and destructional patterns-void classification of rhodoliths from Giglio Island, Italy. Palaios 30:680–691CrossRefGoogle Scholar
  56. Peryt TM (2006) The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sed Geol 188–189:379–396CrossRefGoogle Scholar
  57. Piller W, Harzhauser M (2005) The myth of the brackish Sarmatian Sea. Terra Nova 5:450–455CrossRefGoogle Scholar
  58. Pisera A, Studencki W (1989) Middle Miocene rhodoliths from the Korytnica Basin (southern Poland): environmental significance and paleontology. Acta Palaeontol Pol 34(3):179–209Google Scholar
  59. Popescu G, Mărunțeanu M, Filipescu S (1995) Neogene from Transylvania Depression. Guide to excursion A1. 10th RCMNS congress. Romanian J Stratigr 76(3):1–27Google Scholar
  60. Prica I (2001) Coralgal facies of the upper Eocene-lower Oligocene limestones in Letca-Rastoci area. Studia Universitatis Babeş-Bolyai, Geologia 46(2):53–61CrossRefGoogle Scholar
  61. Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34(1):151–166CrossRefGoogle Scholar
  62. Rado G (1966) Dasycladacee în depozitele Tortoniene din Republica Socialistă Romania. Analele Universităţii Bucureşti, Seria Stiintelor Naturii, Geologie-Geografie 15(1):13–17 (In Romanian) Google Scholar
  63. Rahman A, Roth PH (1990) Late Neogene paleoceanography and paleoclimatology of the Gulf of Aden region based on calcareous nannofossils. Paleoceanography 5(1):91–107CrossRefGoogle Scholar
  64. Randazzo AF, Müler P, Lelkes G, Juhász E, Hámor T (1999) Cool-water limestones of the Pannonian basinal system, Middle Miocene, Hungary. J Sediment Res 69(1):283–293CrossRefGoogle Scholar
  65. Rasser MW, Piller WE (1999) Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J Micropalaeontol 18(1):67–80CrossRefGoogle Scholar
  66. Reuter M, Piller WE, Erhart C (2012) A Middle Miocene carbonate platform under silici-volcanoclastic sedimentation stress (Leitha Limestone Styrian Basin, Austria)—Depositional environments, sedimentary evolution and palaeoecology. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:198–211CrossRefGoogle Scholar
  67. Saint-Martin J-P, Merle D, Cornée J-J, Filipescu S, Saint-Martin S, Bucur II (2007) Les constructions coralliennes du Badénien (Miocène moyen) de la bordure occidentale de la dépression de Transylvanie (Roumanie). Comptes Rendus Paleovol 6:37–46CrossRefGoogle Scholar
  68. Setchell WA (1943) Mastophora and the Mastophoreae: genus and subfamily of Corallinaceae. Proc Natl Acad Sci U S A 29:127–135CrossRefGoogle Scholar
  69. Silva PC, Johansen HW (1986) A reappraisal of the order Corallinales (Rhodophyceae). Br Phycol J 21:245–254CrossRefGoogle Scholar
  70. Studencki W (1988) Red algae from the Pińczów limestones (Middle Miocene), Świętokrzyskie Mountains, Poland). Acta Palaeontol Pol 33(1):3–57Google Scholar
  71. Studencki W (1999) Red-algal limestones in the Middle Miocene of the Carpathian Foredeep in Poland: facies variability and palaeoclimatic implications. Geol Q 43(4):395–404Google Scholar
  72. Szakács A, Pécskay Z, Silye L, Balogh K, Vlad D, Fülöp A (2012) On the age of the Dej Tuff, Transylvanian Basin (Romania). Geologica Carpathica 63(2):139–148CrossRefGoogle Scholar
  73. Wilson MEJ, Lokier SW (2002) Siliciclastic and volcanoclastic influences on equatorial carbonates: insights from the Neogene of Indonesia. Sedimentology 49:583–601CrossRefGoogle Scholar
  74. Woelkerling WJ (1988) The coralline red algae: an analysis of the genera and subfamilies of non-geniculate Corallinaceae. Oxford University Press, Oxford, p 268Google Scholar
  75. Woelkerling WJ, Irvine L, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6(4):77–293CrossRefGoogle Scholar
  76. Young JR, Bown PR, Lees JA (2013) Nannotax Website. International Nannoplankton Association. Accessed 27 Feb 2018
  77. Zágoršek K, Filipescu S, Holcová K (2010) New Middle Miocene bryozoa from Gârbova de Sus (Romania) and their relationship to the sedimentary environment. Geologica Carpathica 61(6):495–512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology and Center for Integrated Geological StudiesBabeș-Bolyai UniversityCluj NapocaRomania
  2. 2.Faculty of Environmental Sciences and EngineeringBabeș-Bolyai UniversityCluj NapocaRomania
  3. 3.Interdisciplinary Research Institute on Bio-Nano-SciencesBabeş-Bolyai UniversityCluj NapocaRomania

Personalised recommendations