Advertisement

Facies

, 64:29 | Cite as

The mid-Cretaceous Debarsu Formation (Upper Albian–Middle Turonian) of Central Iran: depositional environment, palaeogeography, and sequence stratigraphic significance

  • Markus Wilmsen
  • Marisa Storm
  • Franz Theodor Fürsich
  • Mahmoud Reza Majidifard
  • Felix Schlagintweit
  • Malcolm Hart
Original Article
  • 91 Downloads

Abstract

The Upper Albian–Turonian Debarsu Formation in its type area around Haftoman, south of Khur (Central Iran) has been investigated using an integrated approach of high-resolution logging, bio- and sequence stratigraphic dating, and facies analysis based on field observations and detailed microfacies studies. The up to 500-m-thick Debarsu Formation consists of stacked, several 10- to ~ 100-m-thick, essentially asymmetric shallowing-upward cycles from grey offshore marl via skeletal and intraclastic limestone with large-scale clinoformed foresets to thick-bedded bioclastic, locally rudist-bearing shallow-marine topset strata capped by palaeokarst surfaces. The diverse (micro)facies inventory (29 facies types) is dominated by skeletal carbonates (bioclastic pack-, grain-, float- and rudstone) that reflect deposition on a carbonate ramp with a lagoonal shoreline that was attached to an elevated area in the west and southwest. The outer ramp facies association of the Debarsu ramp contains predominantly microbioclastic marl with open-marine microfossils (planktic foraminifera) and fine-grained bioturbated packstone. The transition into the mid-ramp facies association, dominated by bioclastic pack- and grainstone (foreset strata), is commonly gradational. The inner-ramp facies association is very diverse, mainly consisting of high-energy (well-washed and cross-bedded) grainstone as well as back-ramp or inter-shoal bioclastic float- and rudist bafflestone. The Debarsu Formation occurs in an area of more than 2500 km2 to the west, southwest, and south of Khur but had its depocenter with maximum thicknesses and thick offshore marl intervals in the type area. The large-scale shallowing-upward cycles correspond to third-order depositional sequences. The chronostratigraphic positions of the sequence-bounding unconformities in the Upper Albian to Lower Cenomanian match equivalent surfaces known from other Cretaceous basins on different tectonic plates. However, a large-scale intraformational stratigraphic gap (Middle Cenomanian to lowermost Turonian) at a major palaeokarstic surface in the upper part of the formation must be related to tectonic uplift. The Debarsu Formation shows similarities in (sequence) stratigraphic stacking patterns to hydrocarbon-bearing formations of the southern Tethyan margin (Arabian Plate).

Keywords

Mid-Cretaceous Microfacies analysis Carbonate ramp Palaeogeography Depositional sequences 

Notes

Acknowledgements

Constructive reviews by B. Granier (Brest) and K. Seyed-Emami (Tehran) as well as the professional editorial handling by M.E. Tucker (Bristol) are gratefully acknowledged. MW and FTF thank the Geological Survey of Iran (GSI, Tehran) and the Darius programme (UPCM, Paris) for support of the studies in Iran. This paper is also a contribution to German Research Foundation (DFG) project Wi 1743/6-1 and/6-2. Valuable comments and suggestions of T. Steuber (Abu Dhabi) and M. Simmons (Oxfordshire) considerably improved an earlier version of the manuscript.

References

  1. Agard A, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constrains from collisional and earlier deformation. Int J Earth Sci 94:401–419CrossRefGoogle Scholar
  2. Ahr WM (1973) The carbonate ramp: an alternative to the shelf model. Gulf Coast Assoc Geol Soc Transact 23:221–225Google Scholar
  3. Aigner T (1982) Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk Limestones (Middle Trias, SW-Germany). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin, pp 180–198CrossRefGoogle Scholar
  4. Aistov L, Melnikov B, Krivyakin B, Morozov L, Kiristaev V (1984) Geology of the Khur area (Central Iran). Explanatory text of the Khur quadrangle map 1:250.000. V/O Technoexp Rep 20:1–130Google Scholar
  5. Amédro F (2008) Support for a Vraconnian Stage between the Albian sensu stricto and the Cenomanian (Cretaceous System). Carnets Géol Mem 2008(02):1–83Google Scholar
  6. Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in Central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155CrossRefGoogle Scholar
  7. Barrier E, Vrielynck B (2008) Map 6: Cenomanian (99.6–93.5 Ma). In: Barrier E, Vrielynck B (eds) Palaeotectonic maps of the Middle East – tectono-sedimentary–palinspastic maps from the Late Norian to Pliocene. Comm Geol Map World (CGMW), ParisGoogle Scholar
  8. Berberian M, King GCP (1981) Towards a palaeogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  9. Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J Geol Soc Lond 139:605–614CrossRefGoogle Scholar
  10. Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57CrossRefGoogle Scholar
  11. Caron M (1985) Cretaceous planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. University Press, Cambridge, pp 17–86Google Scholar
  12. Cifelli F, Mattei M, Rashid H, Ghalamghash J (2013) Right-lateral transpressional tectonics along the boundary between Lut and Tabas blocks (Central Iran). Geophys J Int 193:1153–1165CrossRefGoogle Scholar
  13. Davoudzadeh M (1997) Iran. In: Moores EM, Fairbridge RM (eds) Encyclopedia of European and Asian regional geology. Encyclopedia of Earth Sciences Series, Chapman & Hall, pp 384–405CrossRefGoogle Scholar
  14. Davoudzadeh M, Soffel H, Schmidt K (1981) On the rotation of the Central-East Iran microplate. N Jb Geol Paläont Mh 1981:180–192Google Scholar
  15. Delavari M, Amini S, Schmitt AK, McKeegan KD, Harrison TM (2014) U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos 200–201:197–211CrossRefGoogle Scholar
  16. Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  17. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1. Am Assoc Petrol Geol Mem, pp 108–121Google Scholar
  18. Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686CrossRefGoogle Scholar
  19. Esmaeily D, Bouchez JL, Siqueira R (2007) Magnetic fabrics and microstructures of the Jurassic Shah-Kuh granite pluton (Lut Block, Eastern Iran) and geodynamic inference. Tectonophysics 439:149–170CrossRefGoogle Scholar
  20. Esrafili-Dizaji B, Rahimpour-Bonab H, Mehrabi H, Afshin S, Harchegani FK, Shahverdi N (2015) Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran. Facies 61:14CrossRefGoogle Scholar
  21. Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, pp 1–976Google Scholar
  22. Fürsich FT, Wilmsen M, Seyed-Emami K, Majidifard MR (2009) Lithostratigraphy of the Upper Triassic-Middle Jurassic Shemshak Group of northern Iran. In: Brunet M-F, Wilmsen M, Granath J (eds) South Caspian to Central Iran Basins, vol 312. Geol Soc Lond Spec Publ, pp 129–160Google Scholar
  23. Gili E, Masse J-P, Skelton PW (1995) Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr Palaeoclimatol Palaeoecol 118:245–267CrossRefGoogle Scholar
  24. Goldring R (1999) Field palaeontology, 2nd edn. Longman, Singapore, p 191Google Scholar
  25. Hacker BR, Mosenfelder JL, Gnos E (1996) Rapid emplacement of the Oman ophiolite: thermal and geochronologic constraints. Tectonics 15:1230–1247CrossRefGoogle Scholar
  26. Hairapetian V, Wilmsen M, Ahmadi A, Shojaei Z, Berensmeier M, Majidifard MR (2018) Integrated stratigraphy, facies analysis and correlation of the upper Albian–lower Turonian of the Esfahan area (Iran): unravelling the conundrum of the so-called “Glauconitic Limestone”. Cretac Res 90:391–411CrossRefGoogle Scholar
  27. Hancock JM (1991) Ammonite scales for the Cretaceous system. Cretac Res 12:259–291CrossRefGoogle Scholar
  28. Hancock JM, Kauffman EG (1979) The great transgressions of the late Cretaceous. J Geol Soc Lond 136:175–186CrossRefGoogle Scholar
  29. Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58CrossRefGoogle Scholar
  30. Huber BT, Petrizzo MR (2014) Evolution and taxonomic study of the Cretaceous planktic foraminiferal genus Helvetoglobotruncana Reiss, 1957. J Foram Res 44:40–57CrossRefGoogle Scholar
  31. Huckriede R, Kürsten M, Venzlaff H (1962) Zur Geologie des Gebietes zwischen Kerman und Sagand (Iran). Beih Geol Jahrb 51:1–197Google Scholar
  32. Immel H, Seyed-Emami K, Afshar-Harb M (1997) Kreide-Ammoniten aus dem iranischen Teil des Koppeh-Dagh (NE-Iran). Zitteliana 21:159–190Google Scholar
  33. Janetschke N, Niebuhr B, Wilmsen M (2015) Inter-regional sequence-stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian-Turonian correlations around the Mid-European Island. Cretac Res 56:530–549CrossRefGoogle Scholar
  34. Kennedy WJ (1984) Ammonite faunas and the “standard zones” of the Cenomanian to Maastrichtian stages in their type areas, with some proposals for the definition of the stage boundaries by ammonites. Bull Geol Soc Denmark 33:147–161Google Scholar
  35. Kennedy WJ, Latil J-L (2007) The Upper Albian ammonite succession in the Montlaux section, Hautes-Alpes, France. Acta Geol Polon 57:453–478Google Scholar
  36. Kennedy WJ, Chahida MR, Djafarian MA (1979) Cenomanian cephalopods from the Glauconitic Limestone southeast of Esfahan. Iran. Acta Palaeont Polon 14:3–50Google Scholar
  37. Lindenberg HG, Görler K, Ibbeken H (1983) Stratigraphy, structure and orogenetic evolution of the Sabzevar Zone in the area of Oryan Khorasan, NE Iran. Geol Surv Iran Rep 51:120–143Google Scholar
  38. Majidifard MR (1996) Stratigraphy, fossils and environment of lower Cretaceous rocks from the northern hills of Shirkuh. Geol Surv Iran Earth Sci 20:2–31 [in Farsi] Google Scholar
  39. Mattei M, Cifelli F, Muttoni G, Zanchi A, Berra F, Mossavvari F, Eshraghi SA (2012) Neogene block rotation in Central Iran: evidence from paleomagnetic data. Geol Soc Am Bull 124:943–956CrossRefGoogle Scholar
  40. Mattei M, Cifelli F, Muttoni G, Rashid H (2015) Post-Cimmerian (Jurassic–Cenozoic) palaeogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains. J Asian Earth Sci 102:92–101CrossRefGoogle Scholar
  41. Mehmandosti EA, Adabi MH, Woods AD (2013) Microfacies and geochemistry of the middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran. Sediment Geol 293:9–20CrossRefGoogle Scholar
  42. Meischner K-D (1964) Allodapische Kalke, Turbidite in Riff-nahen Sedimentations-Becken. Dev Sediment 3:156–191CrossRefGoogle Scholar
  43. Mosavinia A, Wilmsen M (2011) Cenomanian Acanthoceratoidea (Cretaceous Ammonoidea) from the Aitamir Formation (Koppeh Dagh, NE Iran): taxonomy and stratigraphic implications. Acta Geol Polon 61:175–192Google Scholar
  44. Muttoni G, Mattei M, Balini M, Zanchi A, Gaetani M, Berra F (2009a) The drift history of Iran from the Ordovician to the Triassic. In: Brunet M-F, Wilmsen M, Granath J (eds) South Caspian to Central Iran Basins, vol 312. Geol Soc Lond Spec Publ, pp 7–29Google Scholar
  45. Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009b) Opening of the Neo-Tethys ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14:17–48Google Scholar
  46. Nabavi MH (1972) Geological quadrangle map of Iran, H 9, Yazd 1:250,000. Geol Surv Iran, TehranGoogle Scholar
  47. Niebuhr B, Wilmsen M, Janetschke N (2014) Cenomanian-Turonian sequence stratigraphy and facies development of the Danubian Cretaceous Group (Bavaria, southern Germany). Z dt Ges Geowiss 165:621–640Google Scholar
  48. Ogg JG, Hinnov LA (2012) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–853CrossRefGoogle Scholar
  49. Owen HG (2012) The Gault Group (Early Cretaceous, Albian) in East Kent, S.E. England; its lithology and ammonite biozonation. Proc Geol Assoc 123:742–765CrossRefGoogle Scholar
  50. Parlak O, Delaloye M (1999) Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301:145–158CrossRefGoogle Scholar
  51. Philip J, Floquet M (2000) Late Cenomanian (94.7–93.5). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys Palaeogeographical Maps. CCGM/CGMW, Paris, pp 129–136Google Scholar
  52. Rahimpour-Bonab H, Mehrabi H, Enayati-Bidgoli AH, Omidvar M (2012) Coupled imprints of tropical climate and recurring emersions on reservoir evolution of a mid-Cretaceous carbonate ramp, Zagros basin, SW Iran. Cretac Res 37:15–34CrossRefGoogle Scholar
  53. Razin P, Taati F, Buchem FSP van (2010) Sequence stratigraphy of Cenomanian–Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate. In: Buchem FSP van, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic Carbonate systems of the Mediterranean and the Middle East, vol 329. Geol Soc Lond Spec Publ, pp 187–218Google Scholar
  54. Razin P, Grelaud C, van Buchem F (2017) The mid-Cretaceous Natih Formation in Oman: a model for carbonate platforms and organic-rich intrashelf basins. AAPG Bull 101:515–522CrossRefGoogle Scholar
  55. Read JF (1985) Carbonate platform facies models. Am Assoc Petrol Geol Bull 69:1–21Google Scholar
  56. Rich JL (1951) Three critical environments of deposition and criteria for recognition of rocks deposited in each of them. Geol Soc Am Bull 62:1–20CrossRefGoogle Scholar
  57. Robaszynski F, Hardenbol J, Caron M, Amédro F, Dupuis C, Gonzales Donoso JM, Linares D, Gartner S (1993) Sequence stratigraphy in a distal environment: the Cenomanian of the Kalaat Senan region (central Tunisia). Bull Centr Rech Explor-Prod Elf Aquitaine 17:395–433Google Scholar
  58. Robaszynski F, Juignet P, Gale AS, Amédro F, Hardenbol J (1998) Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: Jaquin T, de Graciansky P, Hardenbol J (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, vol 60. Soc Econ Paleont Miner Spec Publ, pp 363–385Google Scholar
  59. Robertson A (1987) The transition from a passive margin to an Upper Cretaceous foreland basin related to ophiolite emplacement in the Oman Mountains. Geol Soc Amer Bull 99:633–653CrossRefGoogle Scholar
  60. Robertson A, Parlak O, Ustaomer T (2012) Overview of the Palaeozoic-Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petrol Geosci 18:381–404CrossRefGoogle Scholar
  61. Ruttner A, Nabavi M, Hadjian J (1968) Geology of the Shirghest area (Tabas area, east Iran). Geol Surv Iran, Rep 4:1–133Google Scholar
  62. Sdzuy K, Monninger W (1985) Neue Modelle des “Jakobstabes”. N Jb Geol Paläont Mh 1985:300–320Google Scholar
  63. Searle MP, Cherry AG, Ali MY, Cooper DJW (2014) Tectonics of the Musandam Peninsula and northern Oman Mountains: from ophiolite obduction to continental collision. GeoArabia 19:135–174Google Scholar
  64. Seyed-Emami K (1982) Turrilitidae (Ammonoidea) aus dem Glaukonitkalk bei Esfahan (Zentraliran). N Jb Geol Paläont Abh 163:417–434Google Scholar
  65. Seyed-Emami K, Immel H (1995) Ammoniten aus dem Alb (Kreide) von Shir-Kuh (N Yazd, Zentraliran). Paläont Z 69:377–399CrossRefGoogle Scholar
  66. Seyed-Emami K, Brants A, Bozorgnia F (1971) Stratigraphy of the Cretaceous rocks southeast of Esfahan. Geol Surv Iran Rep 20:5–40Google Scholar
  67. Seyed-Emami K, Bozorgnia F, Eftekhar-Nezhad J (1972) Der erste sichere Nachweis von Valanginien im nordöstlichen Zentaliran (Sabzewar-Gebiet). N Jb Geol Paläont Mh 1:52–67Google Scholar
  68. Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. GeoArabia Spec Publ 2:1–371Google Scholar
  69. Skelton PW, Gili E (2002) Palaeoecological classification of rudist morphotypes. In: Sladić-Trifunović M (ed) Proceedings: first international conference on rudists, Beograd 1988. Mem Publ, Union Geol Soc Yugoslavia, pp 265–285Google Scholar
  70. Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117CrossRefGoogle Scholar
  71. Soffel H, Davoudzadeh M, Rolf C, Schmidt S (1996) New palaeomagnetic data from Central Iran and a Triassic palaeo-reconstruction. Geol Rundsch 85:293–302CrossRefGoogle Scholar
  72. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33CrossRefGoogle Scholar
  73. Steuber T (2000) Skeletal growth rates of Upper Cretaceous rudistid bivalves: implications for carbonate production and organism-environment feedbacks. In: Insalaco E, Skelton PW, Palmer TJ (eds), Carbonate platform systems: components and interactions, vol 178. Geol Soc London, Spec Publ, pp 1–32CrossRefGoogle Scholar
  74. Stöcklin J, Eftekhar-Nezhad J, Hushmand-Zadeh A (1965) Geology of the Shotori range (Tabas area, East Iran). Geol Surv Iran Rep 3:1–69Google Scholar
  75. Stow DAV (2005) Sedimentary rocks in the field, 2nd edn. Manson Publishing, London, p 320CrossRefGoogle Scholar
  76. Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150CrossRefGoogle Scholar
  77. Tirrul R, Bell IR, Griffis RJ, Camp VE (1983) The Sistan suture zone of eastern Iran. Geol Soc Am Bull 94:134–150CrossRefGoogle Scholar
  78. Vail PR, Audemard F, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology - an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 617–659Google Scholar
  79. van Buchem FSP, Razin P, Homewood PW, Philip JM, Eberli GP, Platel J-P, Roger J, Eschard R, Desaubliaux GMJ, Boisseau T, Leduc J-P, Labourdette R, Cantaloube S (1996) High-resolution sequence stratigraphy of the Natih Formation (Cenomanian/Turonian) in northern Oman: distribution of source rocks and reservoir facies. GeoArabia 1:65–91Google Scholar
  80. van Buchem FSP, Razin P, Homewood PW, Oterdom WH, Philip J (2002) Stratigraphic organization of carbonate ramps and organic-rich intrashelf basins: Natih Formation (middle Cretaceous) of northern Oman. AAPG Bull 86:21–53Google Scholar
  81. van Buchem FSP, Simmons MD, Droste HJ, Davies RB (2011) Late Aptian to Turonian stratigraphy of the eastern Arabian Plate—depositional sequences and lithostratigraphic nomenclature. Petrol Geosci 17:211–222CrossRefGoogle Scholar
  82. Vaziri SH, Fürsich FT, Kohansal-Ghadimvand N (2012) Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran. Rev Mexic Cienc Geol 19:384–397Google Scholar
  83. Wiese F, Wilmsen M (1999) Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (Cantabria, N-Spain). N Jb Geol Paläont Abh 212:131–173CrossRefGoogle Scholar
  84. Wilmsen M, Nagm E (2013) Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt. Newsl Stratigr 46:23–46CrossRefGoogle Scholar
  85. Wilmsen M, Wiese F, Seyed-Emami K, Fürsich FT (2005) First record and significance of Cretaceous (Turonian) ammonites from the Shotori Mountains, east-central Iran. Cretac Res 26:181–195CrossRefGoogle Scholar
  86. Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR (2009a) An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. In: Brunet M-F, Wilmsen M, Granath J (eds) South Caspian to Central Iran Basins, vol 312. Geological Society, London, pp 323–344Google Scholar
  87. Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Taheri J (2009b) The Cimmerian orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova 21:211–218CrossRefGoogle Scholar
  88. Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Zamani-Pedram M (2010) Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran. Facies 56:59–87CrossRefGoogle Scholar
  89. Wilmsen M, Fürsich FT, Majidifard MR (2012) Porosphaera globularis (Phillips, 1829) (Porifera, Calcarea) from the Maastrichtian Farokhi Formation of Central Iran. Cretac Res 33:91–96CrossRefGoogle Scholar
  90. Wilmsen M, Fürsich FT, Majidifard J (2013a) The Shah Kuh Formation, a latest Barremian: early Aptian carbonate platform of Central Iran (Khur area, Yazd Block). Cretac Res 39:183–194CrossRefGoogle Scholar
  91. Wilmsen M, Storm M, Fürsich FT, Majidifard MR (2013b) Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran). Acta Geol Polon 63:489–513CrossRefGoogle Scholar
  92. Wilmsen M, Fürsich FT, Majidifard J (2015) An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran. J Asian Earth Sci 102:73–91CrossRefGoogle Scholar
  93. Wilmsen M, Berensmeier M, Fürsich FT, Majidifard MR, Schlagintweit F (2018) A Late Cretaceous epeiric carbonate platform: the Haftoman Formation of Central Iran. Facies 64:11CrossRefGoogle Scholar
  94. Wright CW, Kennedy WJ (1984) The Ammonoidea of the Lower Chalk. Part I. Palaeontogr Soc Monogr 567(137):1–126Google Scholar
  95. Zamani-Pedram M (2011) Source, facies, and sedimentary environments of the Middle to Upper Jurassic strata in the Kerman and Tabas areas, east-Central Iran. PhD thesis, Würzburg University, Würzburg, 212 p. http://opus.uni-wuerzburg.de/frontdoor/index/index/docId/4840

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Markus Wilmsen
    • 1
  • Marisa Storm
    • 2
    • 7
  • Franz Theodor Fürsich
    • 3
  • Mahmoud Reza Majidifard
    • 4
  • Felix Schlagintweit
    • 5
  • Malcolm Hart
    • 6
  1. 1.Senckenberg Naturhistorische Sammlungen DresdenMuseum für Mineralogie und Geologie, Sektion PaläozoologieDresdenGermany
  2. 2.Departments of Earth SciencesUniversity of OxfordOxfordUK
  3. 3.GeoZentrum Nordbayern, Fachgruppe PaläoumweltFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.Research Institute for Earth SciencesGeological Survey of IranTehranIran
  5. 5.MunichGermany
  6. 6.School of Geography, Earth and Environmental SciencesUniversity of PlymouthPlymouthUK
  7. 7.Departments of Earth SciencesUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations