, 64:27 | Cite as

The nepionic stage of Solenomeris Douvillé, 1924 (Acervulinidae, Foraminiferida): new observations from the uppermost Maastrichtian-early Danian of Austria (Kambühel Formation, Northern Calcareous Alps)

  • Felix SchlagintweitEmail author
  • Diethard Sanders
  • Martin Studeny
Original Article


In the shallow-water limestone succession of the Kambühel Formation (upper Maastrichtian to upper Thanetian, Northern Calcareous Alps), the benthic-vagile to encrusting-sessile acervulinid foraminifer Solenomeris Douvillé was identified in upper Maastrichtian and, more commonly, lower Danian rocks. We report on the free nepionic (juvenile) stage of this foraminifer, its relation to the adult encrusting stage, and competitive interaction with coralline algae. Whereas morphology and chamber arrangement of the free nepionts clearly assign the Alpine specimens to Solenomeris, the chamber shape in axial sections differs from the Eocene type-species S. ogormani, accounting for classification in open nomenclature. Nepiont chamber shape can be used as a further specific criterion besides size of adult chambers and, perhaps, growth habit. A two-stage concept of ontogenetic development is presented. Solenomeris flourished in early Danian high-stress environments (perhaps related to cooler waters and/or elevated nutrient level) under conditions less favorable for encrusting corallines that competed for substrate. Absence of Solenomeris in upper Danian limestones and in upper Thanetian coralgal limestones that form the top of the Kambühel Formation may be related to recovery of coralline algae in shallow-marine environments of low to moderate nutrient level.


Benthic foraminifera Alps Acervulinacea Systematics Paleocene Kambühel Formation Lower Austria 



Two anonymous reviewers are thanked for their constructive comments. Financial support from Grant “Nachwuchsförderung der Universität Innsbruck”, project W715505 (to Martin Studeny) is gratefully acknowledged. The stratigraphic data of Kambühel locality were obtained from planktonic foraminifera determined by Gerta Keller (Princeton). Last but not least, we kindly acknowledge comments by Christine Perrin (Paris) on some of the Solenomeris specimens.


  1. Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651–667CrossRefGoogle Scholar
  2. Aguirre J, Baceta JI, Braga JC (2007) Recovery of marine producers after the Cretaceous–Tertiary mass extinction: Paleocene calcareous red algae from the Iberian Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 249:393–411CrossRefGoogle Scholar
  3. Alve E (2003) A common opportunistic foraminiferal species as an indicator of rapidly changing conditions in a range of environments. Estuar Coast Shelf Sci 57:501–514CrossRefGoogle Scholar
  4. Baceta JI, Pujalte V, Serra-Kiel J, Robador A, Orue-Etxebarria X (2004) El Maastrichense final, Paleoceno e Ilerdiense inferior de la Cordillera Pirenaica. In: Vera JA (ed) Geología de España. Soc Geol Esp Inst Geol Min Esp, pp 308–313Google Scholar
  5. Baceta JI, Pujalte V, Bernaola G (2005) Paleocene coralgal reefs of the western Pyrenean basin, northern Spain: new evidence supporting an earliest Paleogene recovery of reefal ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 224(2005):117–143CrossRefGoogle Scholar
  6. Barattolo F (2002) Late Cretaceous–Paleogene Dasycladaleans and the K/T boundary problem. In: Bucur II, Filipescu S (eds) Research advances in calcareous algae and microbial carbonates, Proc 4th IFAA Reg Meeting, Cluj Napoca, Romania, 29 August–5 September 2001, pp 17–40Google Scholar
  7. Bassi D (2003) Reassessment of Solenomeris afonensis Maslov, 1956 (Foraminifera): formerly considered a coralline alga. Rev Españ Micropaleont 35(3):357–363Google Scholar
  8. Bosellini FR, Papazzoni CA (2003) Palaeoecological significance of coral-encrusting foraminiferan associations: a case-study from the Upper Eocene of northern Italy. Acta Pal Polon 48:279–292Google Scholar
  9. Bromley RG, Heinberg C (2006) Attachment strategies of organisms on hard substrates: a palaeontological overview. Palaeogeogr Palaeoclimat Palaeoecol 232:429–453CrossRefGoogle Scholar
  10. Cherchi A, Schroeder R (2005) Menaella bustamantei n. gen., n. sp. (Acervulinacea, Foraminiferida) From the uppermost Albian of northern Spain. Boll Soc Paleont Ital 44(1):1–10Google Scholar
  11. Darga R (1990) The Eisenrichterstein near Hallthurm, Bavaria: an Upper Eocene Carbonate Ramp. Facies 23:17–36CrossRefGoogle Scholar
  12. Dulai A, Bittner MA, Müller P (2008) A monospecific assemblage of a new rhynchionellide brachiopod from the Paleocene of Austria. Fossils Strata 54:193–201Google Scholar
  13. Dullo WC (1983) Fossildiagenese im miozänen Leitha-Kalk der Paratethys von Österreich: Ein Beispiel für Faunenverschiebungen durch Diageneseunterschiede. Facies 8:1–112CrossRefGoogle Scholar
  14. Elliott GF (1965) Tertiary solenoporacean algae and the reproductive structures of the Solenoporaceae. Palaeont 7(4):695–702Google Scholar
  15. Freiwald A, Schönfeld J (1996) Substrate pitting and boring pattern of Hyrrokin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Marine Micropaleont 28:199–207CrossRefGoogle Scholar
  16. Frezza V, Bergamin L, Di Bella L (2005) Opportunistic benthic foraminifera as indicator of eutrophicated environments. Actualistic study and comparison with the Santernian middle Tiber Valley (Central Italy). Boll Soc Paleont Ital 44(3):193–201Google Scholar
  17. Hagn H, Wellnhofer P (1967) Ein erratisches Vorkommen von kalkalpinem Obereozän in Pfaffing bei Wasserburg. Mit einem Beitrag von Alfred Selmeier. Geol Bavarica 57:205–288Google Scholar
  18. Hallock P (1985) Why are larger foraminifera large? Palaios 11:195–208Google Scholar
  19. Hottinger L (2014) Paleogene larger Rotaliid Foraminifera from the Western and Central Neotethys. Springer, Berlin, p 191Google Scholar
  20. Hottinger L, Caus E (1993) Praestorrsella roestae (Visser), a foraminiferal index fossil for Late Cretaceous deeper neritic deposits. Zitteliana 20:213–221Google Scholar
  21. Jorissen FJ, de Stiger HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleont 26:3–15CrossRefGoogle Scholar
  22. Keller G (2014) Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: coincidence? Cause and effect? Geol Soc Am Spec Pap 205:29–55Google Scholar
  23. Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous–Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223CrossRefGoogle Scholar
  24. Kollmann HA, Summesberger H (1982) Excursions to Coniacian-Maastrichtian in the Austrian Alps. Exkursionsführer 4th Meeting Working Group Coniacian-Maastrichtian Stages, Vienna, p 105Google Scholar
  25. Krische O, Gawlick HJ, Schlagintweit F (2012) Resedimented Late Palaeocene shallow-water clasts of the Kambühel Formation of the Weitenau area and their tectonic implications (Salzburg Calcareous Alps, Austria). Aust Jour Earth Sci 105(3):38–47Google Scholar
  26. Le Campion-Alsumard T (1979) Les Cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction. Oceanol Acta 2:143–156Google Scholar
  27. Lein R (1982) Vorläufige Mitteilungen über ein Vorkommen von flyschoider Gosau mit Komponenten paleozäner Riffkalke in den Mürztaler Alpen. Mitt Ges Geol Bergbaustud Österr 28:121–132Google Scholar
  28. Lipps JH (1983) Biotic interactions in benthic foraminifera. In: Tevez MJJ, McCall PL (eds) Biotic Interactions in Recent Fossil Benthic Communities. Plenum Press, New York, pp 331–376CrossRefGoogle Scholar
  29. Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification, vol. 2. Van Nostrand Reinhold, New York, p 970Google Scholar
  30. Maslov VP (1956) Fossil calcareous algae of USSR (in Russian). Trudy Inst geol nauk Akad Nauk SSSR 160:1–301Google Scholar
  31. Moussavian E (1992) On Cretaceous bioconstructions: composition and evolutionary trends of crust-building associations. Facies 26:117–144CrossRefGoogle Scholar
  32. Moussavian E, Höfling R (1993) Taxonomische Position und Palökologie von Solenomeris Douvilllé, 1924 und ihre Beziehung zu Acervulina Schultze, 1854 und Gypsina Carter, 1877 (Acervulinidae, Foraminiferida). Zitteliana 20:263–276Google Scholar
  33. Moussavian E, Vecsei A (1995) Paleocene reef sediments from the Maiella carbonate platform, Italy. Facies 32:213–222CrossRefGoogle Scholar
  34. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge Univ Press, Cambridge, p 426CrossRefGoogle Scholar
  35. Nebelsick JH, Rasser MW, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216CrossRefGoogle Scholar
  36. Nebelsick JH, Bassi D, Lempp J (2013) Tracking palaeoenvironmental change using coralline red algal diversity, growth forms and taphonomy in the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy). Facies 59:133–148CrossRefGoogle Scholar
  37. Perrin C (1987) Solenomeris un Foraminifère Acervulinidae constructeur de récifs. Rev Micropaléont 30:197–206Google Scholar
  38. Perrin C (1994) Morphology of encrusting and free living acervulinid foraminifera: acervulina. Gypsina Solenomeris. Palaeont 37(2):425–458Google Scholar
  39. Piller WE et al. (2004) Stratigraphische Tabelle von Österreich 2004 (sedimentäre Schichtfolgen). Gerin print, WolkersdorfGoogle Scholar
  40. Plaziat JC, Perrin C (1992) Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): palaeoecologic relations with coral reefs. Palaeogeogr Palaeoclimatol Palaeoecol 96:195–231CrossRefGoogle Scholar
  41. Plöchinger B (1967) Erläuterungen zur Geologischen Karte des Hohe-Wand-Gebietes (Niederösterreich) 1:25.000. Geologische Bundesanstalt, Wien, p 142Google Scholar
  42. Pomar L, Baceta JI, Hallock P, Mateu-Vicens G (2017) Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Petrol Geol. CrossRefGoogle Scholar
  43. Rasser MW (1994) Facies and palaeoecolgy of rhodoliths and acervulinid macroids in the Eocene of the Krappfeld (Austria). Beitr Paläont 19:191–217Google Scholar
  44. Rasser MW (2000) Coralline red algal limestones of the Late Eocene Alpine Foreland Basin in Upper Austria: component analysis, facies and palecology. Facies 42:59–92CrossRefGoogle Scholar
  45. Reid PR, Macintyre IG (1988) Foraminiferal-algal nodules from the eastern Caribbean: growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios 3:424–435CrossRefGoogle Scholar
  46. Reznick D, Bryant MJ, Bashey F (2002) r- and k-selection revisited: the role of population regulation in life-history evolution. Ecology 83(6):1509–1520CrossRefGoogle Scholar
  47. Sanders D (1998) Tectonically controlled Late Cretaceous terrestrial to neritic deposition, Gosau Group, Northern Calcareous Alps (Tyrol, Austria). Facies 39:139–178CrossRefGoogle Scholar
  48. Sanders D, Baron-Szabo R (1997) Coral-rudist bioconstructions in the Upper Cretaceous Haidach section (Northern Calcareous Alps, Austria). Facies 36:69–90CrossRefGoogle Scholar
  49. Sanders D, Höfling R (2000) Carbonate deposition in mixed siliciclastic-carbonate environments on top of an orogenic wedge (Late Cretaceous, Northern Calcareous Alps, Austria). Sediment Geol 137:127–146CrossRefGoogle Scholar
  50. Sanders D, Pons JM (1999) Rudist formations in mixed siliciclastic-carbonate depositional environments, Upper Cretaceous, Austria: stratigraphy, sedimentology, and models of development. Palaeogeogr Palaeoclimatol Palaeoecol 148:249–284CrossRefGoogle Scholar
  51. Sanders D, Keller G, Schlagintweit F, Studeny M (2018) Shallow-water K–Pg transition associated with a rocky low-energy shore: the Kambühel section (Northern Calcareous Alps) (abstr.). Pangeo Austria 2018, 24.9.2018–26.9.2018. Geocenter, University of Vienna, ViennaGoogle Scholar
  52. Santos A, Mayoral E (2006) Bioerosive structures of sclerozoan foraminifera from the Lower Pliocene of southern Spain: a contribution to the palaeoecology of marine hard substrate communities. Palaeont 49(4):719–732CrossRefGoogle Scholar
  53. Schultze MJS (1854) Über den Organismus der Polythalamien (Foraminiferen), nebst Bemerkungen über die Rhizopoden im allgemeinen. Ingelmann, Leipzig, p 68Google Scholar
  54. Schlagintweit F, Sanders D (2011) Acicularia? weisswasserensis n. sp. and Terquemella? microsphaera n. sp., two new Dasycladales from the Upper Cretaceous (Late Turonian-Santonian) of the Northern Calcareous Alps (Gosau Group, Austria). Facies 57(1):93–100CrossRefGoogle Scholar
  55. Schlagintweit F, Sanders D, Studeny M (2013) Dasycladaleans from the Upper Turonian to Santonian of Austria (Gosau Group pro parte) and paleobiogeographic considerations. Facies 59(1):247–266CrossRefGoogle Scholar
  56. Schlagintweit F, Švábenická L, Lobitzer H (2003) An occurrence of Paleocene Reefal Limestone in the Zwieselalm Formation of Gosau (Upper Austria). In: Weidinger JT, Lobitzer H, Spitzbart I (eds) Beiträge zur Geologie des Salzkammergutes. Gmundner Geo-Studien, Gmunden, vol 2, pp 173–180Google Scholar
  57. Schlagintweit F, Studeny M, Sanders D (2016) Clypeorbis? ultima n. sp. from the uppermost Maastrichtian of Austria: the youngest representative of the Clypeorbinae Sigal, 1952 (calcareous benthic foraminifera)? Cretac Res 66:163–170CrossRefGoogle Scholar
  58. Seuss B, Wisshak M, Maypes RH, Landman NH (2015) Syn-vivo bioerosion of Nautilus by endo- and epilithic foraminiferans (New Caledonia and Vanuatu). PLoS One 10(4):e0125558. CrossRefGoogle Scholar
  59. Sjoerdsma PG, Van der Zwaan GJ (1992) Simulating the effect of changing organic flux and oxygen content on the distribution of benthic foraminifera. Mar Micropaleontol 19:163–180CrossRefGoogle Scholar
  60. Todd R (1965) A new Rosalina (foraminifera) parasitic on a bivalve. Deep Sea Res Ocean Abstr 12:831–837CrossRefGoogle Scholar
  61. Tollmann A (1976) Monographie der Nördlichen Kalkalpen. Teil II. Analyse des klassischen nordalpinen Mesozoikums Stratigraphie, Fauna und Fazies der Nördlichen Kalkalpen. Franz Deuticke, Vienna, p 580Google Scholar
  62. Tragelehn H (1996) Maastricht und Paläozän am Südrand der Nördlichen Kalkalpen (Niederösterreich, Steiermark)—Fazies, Stratigraphie Paläogeographie und Fossilführung des “Kambühelkalkes” und assoziierter Sedimente. PhD Thesis Univ Erlangen, p 216Google Scholar
  63. Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 67–94CrossRefGoogle Scholar
  64. Varrone D, d’Atri A (2007) Acervulinid macroid and rhodolith facies in the Eocene Nummulitic Limestone of the Dauphinois Domain (Maritime Alps, Liguria, Italy). Swiss J Geosci 100(3):503–515CrossRefGoogle Scholar
  65. Vénec-Peyre MT (1996) Bioeroding foraminifera: a review. Mar Micropaleont 28:19–30CrossRefGoogle Scholar
  66. Verhoff JR, Müller PM, Feldmann PR, Schweitzer CE (2008) A new species of Tumidocarcinidae (Decapoda, Carpilioidea) from the Kambühel Formation (Paleocene) of Austria. Ann Naturhist Mus Wien 111A:225–232Google Scholar
  67. Vescogni A, Bosellini F, Cipriani A, Gurler G, Ilgar A, Paganelli E (2016) The Dağpazarı carbonate platform (Mut Basin, Southern Turkey): facies and environmental reconstruction of a coral reef system during the Middle Miocene Climatic Optimum. Palaeogeogr Palaeoclimatol Palaeoecol 410:213–232CrossRefGoogle Scholar
  68. Wagreich M, Faupl P (1994) Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). Palaeogeogr Palaeoclimatol Palaeoecol 110 (3–4):235–254CrossRefGoogle Scholar
  69. Wiedl T, Harzhauser M, Piller WE (2012) Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies 58:523–548CrossRefGoogle Scholar
  70. Wisshak M, Rüggeberg A (2006) Colonisation and bioerosion of experimental substrates by benthic foraminiferans from euphotic to aphotic depths (Kosterfjord, SW Sweden). Facies 52:1–17CrossRefGoogle Scholar
  71. Wray JL (1977) Calcareous algae. Elsevier, Amsterdam, p 185Google Scholar
  72. Zamagni J, Mutti M, Košir A (2012) The evolution of mid Paleocene-early Eocene coral communities: how to survive during rapid global warming. Palaeogeogr Palaeoclimatol Palaeoecol 317:48–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Felix Schlagintweit
    • 1
    Email author
  • Diethard Sanders
    • 2
  • Martin Studeny
    • 2
    • 3
  1. 1.MunichGermany
  2. 2.Faculty of Geo- and Atmospheric Sciences, Institute of GeologyUniversity of InnsbruckInnsbruckAustria
  3. 3.Biologiezentrum-Oberösterreichisches LandesmuseumLinzAustria

Personalised recommendations