, 64:11 | Cite as

A Late Cretaceous epeiric carbonate platform: the Haftoman Formation of Central Iran

  • Markus WilmsenEmail author
  • Michaela Berensmeier
  • Franz Theodor Fürsich
  • Mahmoud Reza Majidifard
  • Felix Schlagintweit
Original Article


An integrated study of the litho-, bio-, and microfacies of several sections has greatly improved the knowledge on the stratigraphy and depositional setting of the Coniacian to Campanian Haftoman Formation in the Khur area of the northern Yazd Block, Central Iran. Generally, the Haftoman Formation rests on a major tectonic unconformity and commences with a basal conglomerate followed by up to 900 m of shallow-water carbonates with local red sandstone intercalations. Five different depositional environments (from distal to proximal) characterize the facies associations (FA) of the Haftoman Formation: silty, spiculitic wackestone (proximal basin, FA I), bio-/intraclastic wacke-, pack-, and grainstone (marginal shoals, FA II), bioclastic rud-/float-/boundstone (outer platform, FA III), silty mud-/wackestone (lagoonal inner platform, FA IV), and sandstone/sandy limestone (areas close to the mouth of ephemeral streams, FA V). The litho-, micro-, and biofacies of the Haftoman Formation are typical for an epeiric carbonate platform characterized by an arid climate and lagoonal circulation, resulting in nutrient-poor waters, warm temperatures, and high salinities. The Haftoman Platform was attached to an emergent arid hinterland formed by the Anarak Metamorphic Complex to the west and southwest of the study area. Unconformity-bounded depositional units indicate sea-level changes that may correspond to 400-kyr high-frequency sequences but further studies are needed to fully exploit the potential of sequence stratigraphy for regional and inter-regional correlation of the Haftoman Formation.


Upper Cretaceous Facies analysis Carbonate platform Depositional environments 



We thank the Geological Survey of Iran (GSI, Tehran) and the Darius programme (UPCM, Paris) for support of our studies in Iran. We furthermore acknowledge constructive reviews by H. Mehrabi (Tehran) and J.M. Pons (Barcelona) as well as the professional editorial handling by M.E. Tucker.


  1. Aistov L, Melnikov B, Krivyakin B, Morozov L, Kiristaev V (1984) Geology of the Khur area (Central Iran). Explanatory text of the Khur quadrangle map 1:250,000. V/O Technoexp Rep 20:1–130Google Scholar
  2. Arzani N (2011) Stylolite networks in dolomitized limestones and their control on polished decorative stones: a case study from Upper Cretaceous Khur quarries, central Iran. Geopersia 5:25–37Google Scholar
  3. Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155CrossRefGoogle Scholar
  4. Barrier E, Vrielynck B (2008) Map 7: early Campanian (80.6–83.5 Ma). In: Barrier E, Vrielynck B (eds) Palaeotectonic maps of the Middle East—tectono-sedimentary–palinspastic maps from the Late Norian to Pliocene. Comm Geol Map World (CGMW), ParisGoogle Scholar
  5. Baumfalk YA, van Hinte JE (1985) Orbitoides media (d’Archiac) in the Campanian deposits of the A 10 motorway at Mirambeau (Charente maritime). Cretac Res 6:81–189CrossRefGoogle Scholar
  6. Berberian M, King GCP (1981) Towards a palaeogeography and tectonic evolution of Iran. Canad J Earth Sci 18:210–265CrossRefGoogle Scholar
  7. Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J Geol Soc Lond 139:605–614CrossRefGoogle Scholar
  8. Berra F, Zanchi A, Mattei M, Nawab A (2007) Late Cretaceous transgression on a Cimmerian high (Neka Valley, Eastern Alborz, Iran): a geodynamic event recorded by glauconitic sands. Sedim Geol 199:189–204CrossRefGoogle Scholar
  9. Boulila S, Galburn B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD (2011) On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci Rev 109:94–112CrossRefGoogle Scholar
  10. Cifelli F, Mattei M, Rashid H, Ghalamghash J (2013) Right-lateral transpressional tectonics along the boundary between Lut and Tabas blocks (Central Iran). Geophys J Int 193:1153–1165CrossRefGoogle Scholar
  11. Coates AG (1973) Cretaceous Tethyan coral-rudist biogeography related to the evolution of the Atlantic Ocean. Spec Pap Palaeont 12:169–174Google Scholar
  12. Davoudzadeh M (1997) Iran. In: Moores EM, Fairbridge RM (eds) Encyclopedia of European and Asian Regional Geology. Encyclopedia of Earth Sciences Series. Chapman and Hall, London, pp 384–405CrossRefGoogle Scholar
  13. Davoudzadeh M, Soffel H, Schmidt K (1981) On the rotation of the Central-East Iran microplate. N Jb Geol Paläont Mh 1981:180–192Google Scholar
  14. Delavari M, Amini S, Schmitt AK, McKeegan KD, Harrison TM (2014) U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos 200–201:197–211CrossRefGoogle Scholar
  15. Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  16. Droste H (2010) High-resolution seismic stratigraphy of the Shu’eiba and Natih formations in the Sultanate of Oman: implications for Cretaceous epeiric carbonate platform systems. In: Buchem FSP van, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic carbonate systems of the Mediterranean and the Middle East. Geol Soc London Spec Publ 329:45–162Google Scholar
  17. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum, Geologists, vol 1, pp 108–121Google Scholar
  18. Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686CrossRefGoogle Scholar
  19. Esmaeily D, Bouchez JL, Siqueira R (2007) Magnetic fabrics and microstructures of the Jurassic Shah-Kuh granite pluton (Lut Block, Eastern Iran) and geodynamic inference. Tectonophysics 439:149–170CrossRefGoogle Scholar
  20. Esrafili-Dizaji B, Rahimpour-Bonab H, Mehrabi H, Afshin S, Harchegani FK, Shahverdi N (2015) Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran. Facies 61:14CrossRefGoogle Scholar
  21. Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, pp 1–976CrossRefGoogle Scholar
  22. Gale AS, Hardenbol J, Hathway B, Kennedy WJ, Young JR, Phansalkar V (2002) Global correlation of Cenomanian (upper Cretaceous) sequences: evidence for Milankovitch control of sea level. Geology 30:291–294CrossRefGoogle Scholar
  23. Gili E, Masse J-P, Skelton PW (1995) Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr Palaeoclimatol Palaeoecol 118:245–267CrossRefGoogle Scholar
  24. Goldbeck EJ, Langer ME (2009) Biogeographic provinces and patterns of diversity in selected Upper Cretaceous (Santonian–Maastrichtian) larger Foraminifera. SEPM Spec Publ 93:187–232Google Scholar
  25. Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102:535–562CrossRefGoogle Scholar
  26. Goldring R (1999) Field palaeontology, 2nd edn. Longman, Singapore, p 191Google Scholar
  27. Götz S (2001) Rudisten-Assoziationen der keltiberischen Oberkreide SE-Spaniens: Paläontologie, Paläoökologie und Sediment-Organismus-Wechselwirkungen. Bayer Akad Wiss, Math-Naturw Kl Abh NF 171:1–112Google Scholar
  28. Götz S (2003) Biotic interaction and synecology in a Late Cretaceous coral—rudist biostrome of southeastern Spain. Palaeogeo Palaeoclimat Palaeoecol 193:125–138CrossRefGoogle Scholar
  29. Grotzinger JP (1986) Upward shallowing platform cycles: a response to 2.2 billion years of low-amplitude, high-frequency (Milankovitch band) sea level oscillations. Paleoceanography 1:403–416CrossRefGoogle Scholar
  30. Hardenbol J, Thierry J, Farley MB, Jaquin T, de Graciansky P, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Chart 5: Cretaceous biochronostratigraphy. In: de Graciansky P, Hardenbol J, Jaquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc Econom Palaeont Mineral, Spec Publ 60Google Scholar
  31. Hohenegger J (1999) Larger Foraminifera – Microscopical greenhouses indicating shallow-water tropical and subtropical environments in the present and past. In: Hatta A, Oki K (eds) Foraminifera as indicators of marine environments in the present and past. Kagoshima Research Center for the Pacific Islands, Occasional Papers, 32, pp 19–45Google Scholar
  32. Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull Soc Géol France 168:491–505Google Scholar
  33. Kauffman EG (1973) Cretaceous Bivalvia. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, New York, pp 353–383Google Scholar
  34. Lindenberg HG, Görler K, Ibbeken H (1983) Stratigraphy, structure and orogenetic evolution of the Sabzevar Zone in the area of Oryan Khorasan, NE Iran. Geol Surv Iran Rep 51:120–143Google Scholar
  35. Mattei M, Cifelli F, Muttoni G, Zanchi A, Berra F, Mossavvari F, Eshraghi SA (2012) Neogene block rotation in central Iran: evidence from paleomagnetic data. Geol Soc Am Bull 124:943–956CrossRefGoogle Scholar
  36. Mattei M, Cifelli F, Muttoni G, Rashid H (2015) Post-Cimmerian (Jurassic–Cenozoic) palaeogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains. J Asian Earth Sci 102:92–101CrossRefGoogle Scholar
  37. Mehrabi H, Rahimpour-Bonab H, Enayati-Bidgoli AH, Navidtalab A (2014) Depositional environment and sequence stratigraphy of the Upper Cretaceous Ilam Formation in central and southern parts of the Dezful Embayment, SW Iran. Carbonates Evaporites 29:263–278CrossRefGoogle Scholar
  38. Mitchum RM Jr, Van Wagoner JC (1991) High-frequency sequences and their stacking patterns: sequence stratigraphic evidence of high-frequency eustatic cycles. Sedim Geol 70:131–160CrossRefGoogle Scholar
  39. Muttoni G, Mattei M, Balini M, Zanchi A, Gaetani M, Berra F (2009a) The drift history of Iran from the Ordovician to the Triassic. In: Brunet M-F, Wilmsen M, Granath J (eds) South Caspian to Central Iran basins. Geological Society, London, Special Publications, vol 312, pp 7–29Google Scholar
  40. Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009b) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14:17–48Google Scholar
  41. Niebuhr B, Taherpour Khalil Abad M, Wilmsen M, Noorbakhsh Razmi J, Aryaei AA, Ashouri A (2016) First record of late Campanian ammonites from the Abderaz Formation of the Koppeh Dagh, northeastern Iran. Cretac Res 58:202–222CrossRefGoogle Scholar
  42. Ogg JG, Hinnov LA (2012) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–853CrossRefGoogle Scholar
  43. Omrani H, Moazzen M, Oberhänsli R, Altenberger U, Lange M (2013) The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction. Int J Earth Sci 102:1491–1512CrossRefGoogle Scholar
  44. Özer S, Khila A, Quaja M, Zargouni F (2018) First occurrence of rudists from the Coniacian–Santonian limestones of the Saharan platform, southern Tunisia: description, biostratigraphy and correlation. Cretac Res 84:69–87CrossRefGoogle Scholar
  45. Parlak O, Delaloye M (1999) Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301:145–158CrossRefGoogle Scholar
  46. Philip J, Floquet M (2000) Late Cenomanian (94.7–93.5). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys palaeogeographical maps. CCGM/CGMW, Paris, pp 129–136Google Scholar
  47. Pons JM, Vicens E (2006) Field guide to Pyrenean rudist bivalves. Org Divers Evol 6, Electr Suppl 16, part 3:1–18Google Scholar
  48. Pons JM, Vicens E, Pichardo Y, Aguilar J, Oviedo A, Alencáster G, García-Barrera P (2010) A new Early Campanian rudist fauna from San Luis Potosi in Mexico and its taxonomic and stratigraphic significance. J Paleont 84:974–995CrossRefGoogle Scholar
  49. Rahimpour-Bonab H, Mehrabi H, Enayati-Bidgoli AH, Omidvar M (2012a) Coupled imprints of tropical climate and recurring emersions on reservoir evolution of a mid-Cretaceous carbonate ramp, Zagros basin, SW Iran. Cretac Res 37:15–34CrossRefGoogle Scholar
  50. Rahimpour-Bonab H, Mehrabi H, Navidtalab A, Izadi-Mazidi E (2012b) Flow unit distribution and reservoir modeling in Cretaceous carbonates of the Sarvak Formation, Abteymour oilfield, Dezful Embayment, SW Iran. J Petrol Geol 35:213–236CrossRefGoogle Scholar
  51. Razin P, Taati F, Buchem FSP van (2010) Sequence stratigraphy of Cenomanian–Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate. In: Buchem FSP van, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic carbonate systems of the Mediterranean and the Middle East. Geol Soc London Spec Publ 329:187–218Google Scholar
  52. Robertson A, Parlak O, Ustaomer T (2012) Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petrol Geosci 18:381–404CrossRefGoogle Scholar
  53. Robles Salcedo R (2014) La familia Siderolitodae (macroforaminíferos del Cretácico superior): Architectura de la concha, bioestratigrafía, distribucón paleoambiental y paleobiogeografía. Unpubl PhD Thesis, Univ Autònoma de Barcelona, pp 1–183Google Scholar
  54. Sanders D (1998) Upper Cretaceous ‘rudist formations’. Geol Paläont Mitt Innsbruck 23:37–59Google Scholar
  55. Sdzuy K, Monninger W (1985) Neue Modelle des “Jakobstabes”. N Jb Geol Paläont Mh 1985:300–320Google Scholar
  56. Seyed-Emami K, Bozorgnia F, Eftekhar-Nezhad J (1972) Der erste sichere Nachweis von Valanginien im nordöstlichen Zentaliran (Sabzewar-Gebiet). N Jb Geol Paläont Mh 1:52–67Google Scholar
  57. Skelton PW (2013) Rudist classification for the revised Bivalvia volumes of the ‘Treatise on Invertebrate Paleontology’. Carib J Earth Sci 45:9–33Google Scholar
  58. Skelton PW, Gili E (2002) Palaeoecological classification of rudist morphotypes. In: Sladić-Trifunović M (ed) Proceedings—first international conference on rudists, Beograd 1988. Mem Publ, Union Geol Soc Yugoslavia, pp 265–285Google Scholar
  59. Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117CrossRefGoogle Scholar
  60. Soffel H, Davoudzadeh M, Rolf C, Schmidt S (1996) New palaeomagnetic data from Central Iran and a Triassic palaeo-reconstruction. Geol Rundsch 85:293–302CrossRefGoogle Scholar
  61. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33CrossRefGoogle Scholar
  62. Steuber T (2000) Skeletal growth rates of Upper Cretaceous rudistid bivalves: implications for carbonate production and organism-environment feedbacks. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions. Geological Society, London, Special Publications, vol 178, pp 1–32Google Scholar
  63. Stow DAV (2005) Sedimentary rocks in the field, 2nd edn. Manson Publishing, London, pp 1–320CrossRefGoogle Scholar
  64. Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150CrossRefGoogle Scholar
  65. Tirrul R, Bell IR, Griffis RJ, Camp VE (1983) The Sistan suture zone of eastern Iran. Geol Soc Am Bull 94:134–150CrossRefGoogle Scholar
  66. Tröger K-A (2009) Katalog oberkretazischer Inoceramen. Geol Sax 55:1–188Google Scholar
  67. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, pp 1–482CrossRefGoogle Scholar
  68. van Buchem FSP, Simmons MD, Droste HJ, Davies RB (2011) Late Aptian to Turonian stratigraphy of the eastern Arabian Plate—depositional sequences and lithostratigraphic nomenclature. Petrol Geosci 17:211–222CrossRefGoogle Scholar
  69. Vaziri SH, Senowbari-Daryan B, Kohansal-Ghadimvand N (2005) Lithofacies and microbiofacies of the Upper Cretaceous rocks (Sadr unit) of Nakhlak area in northeastern Nain, Central Iran. J Geosci Osaka City Univ 48:71–80Google Scholar
  70. Vaziri SH, Fürsich FT, Kohansal-Ghadimvand N (2012) Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran. Rev Mexic Cienc Geol 19:384–397Google Scholar
  71. Vodrážka R (2006) Entobia exogyrarum (Frič, 1883) from the Upper Cretaceous of the Bohemian Cretaceous Basin. Ichnos 13:1–3CrossRefGoogle Scholar
  72. Voigt S, Hay WW, Honing R, DeConto RM (1999) Biogeographic distribution of late Early to Late Cretaceous rudist-reefs in the Mediterranean as climate indicators. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous ocean–climate system. Geological Society of America, Boulder, Colorado, Special Paper vol 332, pp 91–104Google Scholar
  73. Wendler JE, Meyers SR, Wendler I, Kuss J (2014) A million-year-scale control on Late Cretaceous sea-level. Newsl Stratigr 47:1–19CrossRefGoogle Scholar
  74. Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac Res 24:525–568CrossRefGoogle Scholar
  75. Wilmsen M, Neuweiler F (2008) Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco. Sedimentology 55:773–807CrossRefGoogle Scholar
  76. Wilmsen M, Wiese F, Seyed-Emami K, Fürsich FT (2005) First record and significance of Cretaceous (Turonian) ammonites from the Shotori Mountains, east-central Iran. Cretac Res 26:181–195CrossRefGoogle Scholar
  77. Wilmsen M, Fürsich FT, Majidifard MR (2012) Porosphaera globularis (Phillips, 1829) (Porifera, Calcarea) from the Maastrichtian Farokhi Formation of Central Iran. Cretac Res 33:91–96CrossRefGoogle Scholar
  78. Wilmsen M, Fürsich FT, Majidifard J (2013a) The Shah Kuh Formation, a latest Barremian—early Aptian carbonate platform of Central Iran (Khur area, Yazd Block). Cretac Res 39:183–194CrossRefGoogle Scholar
  79. Wilmsen M, Storm M, Fürsich FT, Majidifard MR (2013b) Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran). Acta Geol Polon 63:489–513Google Scholar
  80. Wilmsen M, Fürsich FT, Majidifard J (2015) An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran. J Asian Earth Sci 102:73–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Markus Wilmsen
    • 1
    Email author
  • Michaela Berensmeier
    • 1
  • Franz Theodor Fürsich
    • 2
  • Mahmoud Reza Majidifard
    • 3
  • Felix Schlagintweit
    • 4
  1. 1.Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und GeologieDresdenGermany
  2. 2.GeoZentrum Nordbayern, Fachgruppe PaläoumweltFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Research Institute for Earth Sciences, Geological Survey of IranTehranIran
  4. 4.MunichGermany

Personalised recommendations