Advertisement

Facies

, Volume 59, Issue 2, pp 347–358 | Cite as

3D morphometry of polyconitid rudist bivalves based on grinding tomography

  • Enric Pascual-CebrianEmail author
  • Dominik K. Hennhöfer
  • Stefan Götz
Original Article

Abstract

Previous taxonomic studies have shown that polyconitid rudists have a characteristic arrangement of the myocardinal system with an ectomyophoral cavity on the posterior side of the left valve. The specific arrangement of the myophores and associated cavities defines the different genera. However, there has been little research on the three-dimensional spatial distribution and size of the internal features, for want of a technique that is suitable for large and low density-contrast specimens. The tomographic technique described herein is based on automatic serial grinding and serial scanning; the resulting images are treated with biomedical image software. The technique has been applied to a pair of well-preserved specimens of Polyconites verneuili from the Upper Aptian of Spain. Fifteen quantitative characters have been obtained using multiplanar virtual cuts, volume-rendering, and isosurfaces reconstructions. The study revealed the shape, size, and distribution of the ectomyophoral, body and accessory cavities, the lengths and volumes of the teeth, and the arrangement of the myophores. We conclude that this technique facilitates the description of rudist bivalves and is suitable for other fossils; moreover, it has the potential to be used in other fields of geology.

Keywords

Polyconites Rudist bivalves Three-dimensional Reconstruction Grinding tomography OsiriX 

Notes

Acknowledgments

Helpful reviews by Peter W. Skelton and Ann Molineux contributed to improve this work. Thanks to our colleagues Ramon Salas, Eulàlia Gili, Telm Bover, Ramon Mas, and Jesús García for the valuable comments on stratigraphical and paleontological details. Patrick Zell and Yvonne Spychala did great jobs in preparation, scanning, and image evaluation. Thanks to Francisco J. Cueto for his help with the software. Financial support was granted by Heidelberg University (“Heidelberg Center for the Environment HCE”, “Frontier Innovationsfonds”), by Deutsche Forschungsgemeinschaft (DFG) project GO 1021/3-2, by the German Academic Exchange Service DAAD (Acciones Integradas), and by the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (“RiSC–Research seed capital”).

Supplementary material

10347_2012_310_MOESM1_ESM.mpg (9 mb)
Online Resource 1 (OR1.mov) Interactive volume rendering video of the specimen CH01 (MPG 9244 kb)

Online Resource 2 (OR2.mov) Volume rendering video of the specimen CH02 (MPG 2068 kb)

Online Resource 3 (OR3.mov) Isosurfaces reconstruction video of the free valve of the specimen CH01 (MPG 7412 kb)

10347_2012_310_MOESM4_ESM.mpg (5 mb)
Online Resource 4 (OR4.mov) Isosurfaces reconstruction video of the right valve of the specimen CH01 (MPG 5072 kb)

Online Resource 5 (OR5.mov) Interactive isosurfaces reconstruction video of the FV of the specimen CH01 (MPG 7358 kb)

References

  1. Ager D (1965) Serial grinding techniques. In: Kummel B, Raup D (eds) Handbook of paleontological techniques. W. H. Freeman, San Francisco, pp 212–224Google Scholar
  2. Baker P (1978) A technique for the accurate reconstruction of internal structures of micromorphic fossils. Palaeontology 21:463–467Google Scholar
  3. Borkin MA, Ridge NA, Goodman AA, Halle M (2005) Demonstration of the applicability of 3D Slicer to Astronomical Data Using 13CO and C18O Observations of IC348. Arxiv preprint astro-ph/0506604Google Scholar
  4. Born G (1883) Die Plattenmodelliermethode. Archiv mikrosk Anat 22:584–599CrossRefGoogle Scholar
  5. Chartrousse A, Masse JP (2004) Revision of the early Aptian Caprininae (rudis bivalves) of the new world. Evolutionary and palaeobiogeographic implications. Cour Forsch-Inst Senckenberg 247:19–34Google Scholar
  6. Coquand H (1865) Monographie de l’étage aptien de l’Espagne. Mém Soc d′Emul Provence 5:191–413Google Scholar
  7. Croft W (1950) A parallel grinding instrument for the investigation of fossils by serial sections. J Paleont 24:693–698Google Scholar
  8. Di-Stefano G (1899) Studi stratigrafici e paleontologici sul sistema cretaceo della Sicilia. I calcari con Polyconites di Termini-Imerese. Palaeontogr it 4:1–46Google Scholar
  9. Douvillé H (1889) Sur quelques rudistes du terrain crétacé inférieur des Pyrénées. Bull Soc géol France 17:627–655Google Scholar
  10. Fenerci-Masse M, Skelton P, Masse JP (2011) The rudist bivalve genus Gorjanovicia (Radiolitidae, Hippuritoidea) a revision of species based on quantitative analysis of morphological characters. Palaeontology 54:1–23CrossRefGoogle Scholar
  11. Götz S (2003) Larval settlement and ontogenetic development of Hippuritella vasseuri (Douvillé) (Hippuritoidea, Bivalvia). Geol Croat 56:2Google Scholar
  12. Götz S (2007) Inside rudist ecosystems: growth, reproduction, and population dynamics. Cretaceous rudists and carbonate platforms: environmental feedback. SEPM (Soc Sediment Geol) 87:97–113Google Scholar
  13. Götz S, Stinnesbeck W (2003) Reproductive cycles, larval mortality and population dynamics of a Late Cretaceous hippuritid association: a new approach to the biology of rudists based on quantitative three‐dimensional analysis. Terra Nova 15:392–397CrossRefGoogle Scholar
  14. Hammer Ø (1999) Computer-aided study of growth patterns in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region. Norsk Geol Tidsskr 79:219–226CrossRefGoogle Scholar
  15. Hendry R, Rowell A, Stanley J (1963) A rapid parallel grinding machine for serial sectioning of fossils. Palaeontology 6:145–147Google Scholar
  16. Hennhöfer DK, Götz S, Mitchell SF (2012) Palaeobiology of a Biradiolites mooretownensis rudist lithosome–seasonality, reproductive cyclicity and population dynamics. Lethaia. doi: 10.1111/j.1502-3931.2012.00307.x
  17. Hughes G, Siddiqui S, Sadler R (2004) Computerized tomography reveals Aptian rudist species and taphonomy. Geol Croat 57:67–71Google Scholar
  18. Joy K, Willis A, Lacey W (1956) A rapid cellulose peel technique in palaeobotany. Ann Bot 20:635Google Scholar
  19. Katz A, Friedman M (1965) The preparation of stained acetate peels for the study of carbonate rocks. J Sediment Res 35:248–249CrossRefGoogle Scholar
  20. Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the mesozoic marine food web revealed by jaw preservation. Science 331:70–72. doi: 10.1126/science.1198793 CrossRefGoogle Scholar
  21. Lane D (1962) Improved acetate peel technique. J Sediment Res 32:870CrossRefGoogle Scholar
  22. Mac Gillavry HJ (1937) Geology of the province of Camaguey, Cuba with revisional studies in rudist paleontology (mainly based upon collections from Cuba). Geograph Geol Mededeel 14:1–168Google Scholar
  23. Malchus N (1998) Aptian (Lower Cretaceous) rudist bivalves from NE Spain: taxonomic problems and preliminary results. Geobios 31:181–191CrossRefGoogle Scholar
  24. Mas R (1981) El Cretácico inferior de la región noroccidental de la provincia de Valencia. Dissertation, Universidad Complutense de Madrid. Madrid. Seminar Estratigr 8:1–409Google Scholar
  25. Masse J, Shiba M (2010) Praecaprotina kashimae nov. sp. (Bivalvia, Hippuritacea) from the Daiichi-Kashima Seamount (Japan Trench). Cret Res 31:147–153CrossRefGoogle Scholar
  26. Masse J, Arias C, Vilas L (1998) Lower Cretaceous rudist faunas of Southeast Spain: an overview. Geobios 31:193–210CrossRefGoogle Scholar
  27. Masse JP, Fenerci-Masse M, Özer S (2002) Late Aptian rudist faunas from the Zonguldak region, western Black Sea, Turkey (taxonomy, biostratigraphy, palaeoenvironment and palaeobiogeography). Cret Res 23:523–536CrossRefGoogle Scholar
  28. Melissano G, Bertoglio L, Civelli V, Moraes Amato A, Coppi G, Civilini E, Calori G, De Cobelli F, Del Maschio A, Chiesa R (2009) Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software OsiriX. Europ J Vasc Endovasc Surg 37:395–400CrossRefGoogle Scholar
  29. Molineux A, Scott R, Ketcham R, Maisano J (2007) Rudist taxonomy using X-ray computed tomography. Palaeont Electro 10, http://palaeo-electronica.org/2007_3/135/index.html
  30. Molineux A, Scott R, Maisano J, Ketcham R, Zachos L (2010) Blending rudists with technology; non-destructive examination of the internal and external structures of rudists using high quality scanning and digital imagery. Turkish J Earth Sci 19:757–767Google Scholar
  31. Muir-Wood H (1934) On the internal structure of some Mesozoic Brachiopoda. Phil Trans Roy Soc Lond Ser B 223:511–567CrossRefGoogle Scholar
  32. Ovcharenko V (1967) Method of studying the internal structure of fossil brachiopod shells. Paleont Jam 104–108Google Scholar
  33. Ratib O, Rosset A (2006) Open-source software in medical imaging: development of OsiriX. Int J Comp Assist Radiol Surg 1:187–196CrossRefGoogle Scholar
  34. Sandy M (1989) Preparation of serial sections, Paleotechniques. Paleont Soc Spec Publ 4:146–156Google Scholar
  35. Scott RW, Weaver M (2010) Ontogeny and functional morphology of a Lower Cretaceous caprinid rudist (Bivalvia, Hippuritoida). Turkish J Earth Sci 19:527–542Google Scholar
  36. Skelton PW, Smith AB (2000) A preliminary phylogeny for rudist bivalves: sifting clades from grades. Geol Soc Lon Spec Publ 177:97–127CrossRefGoogle Scholar
  37. Skelton PW, Gili E, Bover-Arnal T, Salas R, Moreno-Bedmar JA (2010) A new species of Polyconites from the lower Aptian of Iberia and the early evolution of polyconitid rudists. Turkish J Earth Sci 19:557–572Google Scholar
  38. Sollas W (1903) A method for the investigation of fossils by serial sections. Phil Trans R Soc 196:259–265Google Scholar
  39. Sollas I, Sollas W (1913) A study of the skull of a Dicynodon by means of serial sections. Phil Trans R Soc Lond Ser B 204:201–225CrossRefGoogle Scholar
  40. St. Joseph JKS (1937) On Camarototoechia borealis (von Buch 1834, ex Schlotheim 1832). Geol Mag 74:33–48CrossRefGoogle Scholar
  41. Sutton M (2008) Tomographic techniques for the study of exceptionally preserved fossils. Proc R Soc B: Biol Sci 275:1587CrossRefGoogle Scholar
  42. Sutton M, Briggs D, Siveter D (2001) Methodologies for the visualization and reconstruction of three-dimensional fossils from the Silurian Herefordshire Lagerstätte. Palaeontol Electr 4:1–17CrossRefGoogle Scholar
  43. Tutton A (1894) An instrument for cutting, grinding, and polishing section-plates and prisms of mineral or other crystals accurately in the desired directions. Proc R Soc Lond 57:324–330CrossRefGoogle Scholar
  44. Vicens E, Ardèvol L, López-Martínez N, Arribas M (2004) Rudist biostratigraphy in the Campanian-Maastrichtian of the south-central Pyrenees, Spain. Courier Forsch-nst Senckenberg 247:113–127Google Scholar
  45. Walton J (1928) A method of preparing sections of fossil plants contained in coal balls or in other types of petrifaction. Nature 122:571CrossRefGoogle Scholar
  46. Watters WA, Grotzinger JP (2001) Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia. Paleobiology 27:159–171CrossRefGoogle Scholar
  47. Weidenhagen R, Meimarakis G, Jauch KW, Becker CR, Kopp R (2008) OsiriX. Gefässchirurgie 13:278–290. doi: 10.1007/s00772-008-0608-6 CrossRefGoogle Scholar
  48. Westbroek P, van der Meide PH, van der Wey-Kloppers JS, van der Sluis RJ, de Leeuw JW, de Jong EW (1979) Fossil macromolecules from cephalopod shells: characterization, immunological response and diagenesis. Paleobiology 5:151–167Google Scholar
  49. Yamauchi T, Yamazaki M, Okawa A, Furuya T, Hayashi K, Sakuma T, Takahashi H, Yanagawa N, Koda M (2010) Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17:756–759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Enric Pascual-Cebrian
    • 1
    Email author
  • Dominik K. Hennhöfer
    • 1
  • Stefan Götz
    • 1
  1. 1.Institute of Earth SciencesHeidelberg UniversityHeidelbergGermany

Personalised recommendations