pp 1–18 | Cite as

Rock slide–debris avalanches: flow transformation and hummock formation, examples from British Columbia

  • A. DufresneEmail author
  • M. Geertsema
Original Paper


Rock slides quite commonly transform into flow-like landslides along their runout paths. At three initial rock slides in northern British Columbia, which occurred between 2002 and 2005, around 50–70% of the entire runout distance is composed of debris avalanche and debris flow deposits, which is comparable to other composite landslides around the world. Saturated ground conditions at the time of rock sliding make entrainment or undrained loading as agents of flow transformation from initially dry rock slides to partially saturated debris avalanches, respectively, fully saturated debris flows likely. Hummocks occur as clusters within the rock slide parts, whereas the flow-like depositions have more subdued morphologies. We show that late- or post-emplacement motion of individual hummocks is possible and can even divert in direction from the dominant landslide trajectory by responding to the underlying topographic gradient. Analyses of the well-preserved deposits suggest hummock formation above a basal sliding plane (low-angle normal fault) and along subordinate shear zones (high-angle normal faults) within a largely translational mass movement, thereby supporting the hypothesis of hummock formation proposed by Paguican et al. (2014). Pebbles on top of rock slide-debris avalanche boulders and on top of snapped-off trees record much higher dynamic debris flow heights. These and other features are not recorded on ancient landslides due to rapid erosion.


Rock slides Low-angle normal fault High-angle normal faults 



We thank the editorial manager and three anonymous reviewers for constructive comments on this manuscript.


  1. Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpensvereinshefte 25:230Google Scholar
  2. Bednarski JM, Smith IR (2007) Laurentide and montane glaciation along the Rocky Mountain foothills of northeastern British Columbia. Can J Earth Sci 44(4):445–457. CrossRefGoogle Scholar
  3. Bell KLC, Carey SN, Nomikou P, Sigurdsson H, Sakellariou D (2013) Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece. Tectonophysics 597-598:147–160CrossRefGoogle Scholar
  4. Blais-Stevens A, Geertsema M, Schwab JW, Asch T, Van Egginton VN (2007) the 2005 Sutherland River rock slide – debris avalanche, Central British Columbia. 1st international landslide conference Vail, ColoradoGoogle Scholar
  5. Blais-Stevens A, Geertsema M, Schwab JW, van Asch T (2015) The Sutherland River rock slide – debris avalanche, Central British Columbia. Environ Eng Geosci 21(1):35–45CrossRefGoogle Scholar
  6. Boultbee N, Stead D, Schwab JW, Geertsema M (2006) The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83:76–93CrossRefGoogle Scholar
  7. Brideau M-A, Stead D, Lipovsky P, Jaboyedoff M, Hopkinson C, Demuth M, Barlow J, Evans SG, Delaney K (2010) Preliminary description and slope stability analyses of the 2008 Little Salmon Lake and 2007 Mt. Steele landslides, Yukon. In: Yukon Exploration and Geology 2009, K.E. MacFarlane, L.H. Weston and L.R. Blackburn (eds.), Yukon Geological Survey, p. 119–133Google Scholar
  8. Brideau M-A, McDougall S, Stead D, Evans SG, Couture R, Turner K (2012) Three-dimensional modelling and dynamic runout analysis of a landslide in gneissic rock, British Columbia, Canada. Bull Eng Geol Environ 71:467–486CrossRefGoogle Scholar
  9. Buss E, Heim A (1881) Der Bergsturz von Elm. Zürich, Worster, p 133Google Scholar
  10. Capra L, Macias JL (2000) Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. J Volcanol Geotherm Res 102(1–2):149–167CrossRefGoogle Scholar
  11. Capra L, Macias JL, Scott KM, Abrams M, Garduno-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the trans-Mexican Volcanic Belt, Mexico–behavior, and implications for hazard assessment. J Volcanol Geotherm Res 113(1–2):81–110CrossRefGoogle Scholar
  12. Carson MA (1977) On the retrogression of landslides in sensitive muddy sediments. Can Geotech J 14:582–602CrossRefGoogle Scholar
  13. Catane SG, Cabria HB, Tomarong CP Jr, Saturay RM Jr, Zarco MAH, Pioquinto WC (2007) Catastrophic rock slide-debris avalanche at St. Bernard, Southern Leyte, Philippines: Landslides 4:85–90Google Scholar
  14. Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York, p 680Google Scholar
  15. Clague JJ, Ward B (2011) Pleistocene glaciation of British Columbia. In: Ehlers J, Gibbard PL, Hughes PD (eds) quaternary glaciations – extent and chronology, a closer look. Developments in Quaternary Science 15:563–573CrossRefGoogle Scholar
  16. Clavero J, Sparks R, Huppert H, Dade W (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanches, northern Chile. Bull Volcanol 64(1):40–54CrossRefGoogle Scholar
  17. Coe JA, Baum RL, Allstadt KE, Kochevar BF, Schmitt RG, Morgan ML, White JL, Stratton B, Hayashi TA, Kean JW (2016) Rock avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the. West Salt Creek Valley, western Colorado: Geosphere 12(2):607–631Google Scholar
  18. Cruden DM (1982) The Brazeau Lake landslide, Jasper National Park, Alberta. Can J Earth Sci 19:975–981CrossRefGoogle Scholar
  19. Cruden DM, Hungr O (1986) The debris of the frank slide and theories of rock slide-avalanche mobility. Can J Earth Sci 23:425–432CrossRefGoogle Scholar
  20. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner, A. K. and Shuster, R. L. (editors) landslides: investigation and mitigation. Transportation Research Board, Special Report 247:36–75Google Scholar
  21. Davies TR (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15:9–24CrossRefGoogle Scholar
  22. Delaney KB, Evans SG (2015) The 2000 Yigong landslide (Tibetan plateau), rock slide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling. Geomorphology 246(1):377–393CrossRefGoogle Scholar
  23. Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Proc Landforms 37(14):1527–1541 Google Scholar
  24. Dufresne A, Davies TR, McSaveney MJ (2009) Influence of runout-path material on emplacement of the round top rock avalanche, New Zealand. Earth Surf Process Landf 35:190–201Google Scholar
  25. Dufresne A, Bösmeier C, Prager C (2016) Sedimentology of rock avalanche deposits – case study and review. Earth Sci Rev 163:234–259CrossRefGoogle Scholar
  26. Dufresne A, Geertsema M, Shugar DH, Koppes M, Higman B, Haeussler PJ, Stark C, Venditti JG, Bonno D, Larsen C, Gulick SPS, McCall N, Walton M, Loso MG, Willis MJ (2018) Sedimentology and geomorphology of a large tsunamigenic landslide, Taan fiord, Alaska. Sediment Geol 364:302–318CrossRefGoogle Scholar
  27. Dufresne A, Wolken G, Hibert C, Bessette-Kirton E, Coe J, Geertsema M, Ekström G (2019). The 2016 Lamplugh rock avalanche, Alaska: deposit structure and emplacement dynamics In press in LandslidesGoogle Scholar
  28. Dunning SA, Armitage PJ (2012) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds) Natural and artificial rock slide dams. Springer, Berlin, Heidelberg, pp 479–498Google Scholar
  29. Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339:1416–1419CrossRefGoogle Scholar
  30. Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris flow on mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes. Eng Geol 61(1):29–51CrossRefGoogle Scholar
  31. Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2007) The disastrous 17 February 2006 rock slide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7:89–101CrossRefGoogle Scholar
  32. Evans SG, Bishop NF, Smoll LF, Murillo PV, Delaney KB, Oliver-Smith A (2009) A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Eng Geol 108(1-2):96–118Google Scholar
  33. Farin M, Mangeney A, De Rosny J, Toussaint R, Trinh PT (2018) Insights into the generated seismic signal and dynamics of granular flows on horizontal and sloping beds. J Geophys Res Earth Surf 123:1407–1429. CrossRefGoogle Scholar
  34. Gassen WV, Cruden DM (1989) Momentum transfer and friction in the debris of rock avalanches. Can Geotechn J 26(4):623–628Google Scholar
  35. Geertsema M (2006) Hydrogeomorphic hazards in northern British Columbia. Netherlands geographical studies 341, Utrecht, p 185Google Scholar
  36. Geertsema M, Cruden DM (2008) travels in the Canadian cordillera. Proceedings of the 4th Canadian conference on Geohazards, Edmonton AB
  37. Geertsema M, Foord VN (2014) Landslides in the isolated patches permafrost zone, northeastern British Columbia (NTS mapsheet 94G east half). Landslide Science for a Safer Geoenvironment 3. Targeted Landslides 451–455Google Scholar
  38. Geertsema M, Clague JJ, Schwab JW, Evans SG (2006a) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83(1–3):120–143CrossRefGoogle Scholar
  39. Geertsema M, Cruden DM, Schwab JW (2006b) A large rapid landslide in sensitive glaciomarine sediments at Mink Creek, northwestern British Columbia, Canada. Eng Geol 83:36–63CrossRefGoogle Scholar
  40. Geertsema M, Hungr O, Schwab JW, Evans SG (2006c) A large rock slide - debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Eng Geol 83:64–75CrossRefGoogle Scholar
  41. Geertsema M, Blais-Stevens A, Kwoll E, Menounos B, Venditti JG, Grenier A, Wiebe K (2018) Sensitive clay landslide detection and characterization in and around Lakelse Lake, British Columbia, Canada. Sediment Geol 364:217–227CrossRefGoogle Scholar
  42. Glicken H (1991) Sedimentary architecture of large volcanic debris avalanches. In: Fisher RV, Smith GA (Eds.) Sedimentation in Volcanic Settings, SEPM Special Publication 45:99-106Google Scholar
  43. Grainger NC, Anderson RG (1999) Geology of the Eocene Ootsa Lake group in northern Nechako River and southern Fort Fraser map areas, Central British Columbia. Curr Res Geol Surv Canada 1999-A:139–148Google Scholar
  44. Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233CrossRefGoogle Scholar
  45. Guthrie RH, Friele P, Allstadt K, Roberst N, Evans SG, Delaney KB, Roche D, Clague JJ, Jakob M (2012) The 6 august 2010 mount meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Hazards Earth Syst Sci 12:1277–1294CrossRefGoogle Scholar
  46. Haskin M, Snyder LD, Anderson, RG (1998) Tertiary Endako group volcanic and sedimentary rocks at four sites in the Nechako River and Fort Fraser map areas, Central British Columbia; in current research 1998-a; Geological Survey of Canada, pp 155–164Google Scholar
  47. Hasler A, Geertsema M, Foord V, Gruber S, Noetzli J (2015) The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia. Cryosphere 9(3):1025–1038CrossRefGoogle Scholar
  48. Hauser A (2002) Rock avalanche and resulting debris flow in Estero Parraguirre and Rio Colorado, Region Metropolitana, Chile. Catastrophic landslides: effects, occurrence and mechanisms. Geol Soc Am Rev Eng Geol 15:135–148Google Scholar
  49. Heim A (1932) Bergsturz und Menschenleben (Landslides and human lives). Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 77, Beer & Co. in Komm., Zürich 218Google Scholar
  50. Hibert C, Ekström G, Stark CP (2017) The relationship between bulk-mass momentum and short-period seismic radiation in catastrophic landslides. J Geophys Res Earth Surf 122:1201–1215CrossRefGoogle Scholar
  51. Hinds SJ, Cecile MP (2003) Geology, Pink Mountain and Northwest Cypress Creek map areas (94G/2 and NW 94B/15), British Columbia, Geological Survey of Canada Open File 1464, scale 1:50 000Google Scholar
  52. Holland SS (1976) Landforms of British Columbia. A physiographic outline. British Columbia Department of Mines and Petroleum Resources. Bulletin no. 48 Victoria, B.C. 138 pp.Google Scholar
  53. Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86(1):129–140Google Scholar
  54. Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galuskin I, Evans SG (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5(2):173–187CrossRefGoogle Scholar
  55. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  56. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252CrossRefGoogle Scholar
  57. Hungr O, Morgenstern GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677CrossRefGoogle Scholar
  58. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194CrossRefGoogle Scholar
  59. Hutchinson JN, Bandhari R (1971) Undrained loading: a fundamental mechanism of mudflows and other mass movements. Geotechnique 21:353–358CrossRefGoogle Scholar
  60. Jermyn C, Geertsema M (2015) An overview of some recent large landslide types in Nahanni National Park, Northwest Territories, Canada. Engineering geology for society and territory - volume 1: climate change and. Eng Geol 1:315–320. Google Scholar
  61. Jibson RW, Harp EL, Keefer DK, Schulz W (2006) Large rock avalanches triggered by the 2003 Denali fault earthquake, Alaska. Eng Geol 83:144–160CrossRefGoogle Scholar
  62. Kerle N (2002) Volume estimation of the 1998 flank collapse at casita volcano, Nicaragua: a comparison of photogrammetric and conventional techniques. Earth Surf Process Landf 27:759–772CrossRefGoogle Scholar
  63. Kerle N, Van Wyk De Vries B (2001) The 1998 debris avalanche at casita volcano, Nicaragua—investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105(1–2):49–63CrossRefGoogle Scholar
  64. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  65. Locat A, Demers D, Locat P, Geertsema M (2017) sensitive clay landslides in Canada. 70th Canadian geotechnical conference, OttawaGoogle Scholar
  66. Major JM, Iverson RM (1999) Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins. GSA Bull 111(10):1424–1434CrossRefGoogle Scholar
  67. Massey NWD, MacIntyre DG, Desjardins PJ, Cooney RT (2005) Digital geology map of British Columbia: whole province; BC Ministry of Forests, Mines and Lands, GeoFile 2005–1Google Scholar
  68. McDougall S, Boutlbee N, Hungr O, Stead D, Schwab JW (2006) The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide–debris flow. Landslides 3:195–204CrossRefGoogle Scholar
  69. Nicoletti PG, Sorriso-Valvo M (1991) Geomorphic controls of the shape and mobility of rock avalanches. Geol Soc Am Bull 103:1365–1373CrossRefGoogle Scholar
  70. Orwin JF, Clague JJ, Gerath RF (2004) The Cheam rock avalanche, Fraser Valley, British Columbia, Canada. Landslides 1:289–298Google Scholar
  71. Paguican EMR, van Wijk de Vries B, Lagmay A (2014) Hummocks: how they form and how they evolve in rock slide-debris avalanches. Landslides 11(1):67–80CrossRefGoogle Scholar
  72. von Poschinger A, Kippel T (2009) Alluvial deposits liquefied by the Flims landslide. Geomorphology 103:50–56CrossRefGoogle Scholar
  73. Prager C, Zangerl C, Kerschner H (2012) Sedimentology and mechanics of major rock avalanches : Implications from (pre-) historic Sturzstrom deposits (Tyrolean Alps, Austria). In: Eberhardt et al (eds) Landslides and Engineered Slopes: Protecting Society through Improved Understanding. Taylor & Francis Group, London, pp 895–900Google Scholar
  74. Prior DB, Bornhold BD, Coleman JM, Bryant WR (1982) Morphology of a submarine slide, Kitimat arm, British Columbia. Geology 10:588–592CrossRefGoogle Scholar
  75. Ritter DF, Kochel RC, Miller JR (2002). Process Geomorphology. Waveland Pr. Inc.:652Google Scholar
  76. Roberti G, Friele P, van Wyk de Vries B, Ward B, Clague JJ, Perotti L, Giardino M (2017) Rheological evolution of the mount meager 2010 debris avalanche, southwestern British Columbia. Geosphere 13(2):369–390CrossRefGoogle Scholar
  77. Sassa K (2000) Mechanism of flows in granular soils. ISRM international symposium, 19-24 November, Melbourne, AustraliaGoogle Scholar
  78. Sassa K, Wang G (2005) Mechanism of landslide-triggered debris flows: liquefaction phenomena due to the undrained loading of torrent deposits. In: Jakob M, Hungs O (eds) Debris-flow hazards and related phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg, pp 81–104CrossRefGoogle Scholar
  79. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236CrossRefGoogle Scholar
  80. Schultz D (2016) Trees, regardless of size, all break at the same wind speed. Here’s why. Science.
  81. Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes: proceedings IV symposium on landslides. Toronto 1:567–572Google Scholar
  82. Schwab JW, Geertsema M, Evans SG (2003) Catastrophic rock avalanches, west-central B.C., Canada. 3rd Canadian Conference on Geotechnique and Natural Hazards, Edmonton, AB 252–259Google Scholar
  83. Shaller PJ (1991) Analysis of a large moist landslide, lost river range, Idaho, USA. Can Geotech J 28:584–600CrossRefGoogle Scholar
  84. Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4(4):657–686CrossRefGoogle Scholar
  85. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26CrossRefGoogle Scholar
  86. Struik LC, Fallas K, Hrudey MG, Whalen JB (2000) Bedrock geology of the burns Lake map area, British Columbia at scale 1:100,000. Geological Survey of Canada Open File 3840Google Scholar
  87. Vallance JW, Ballard RD (2000) Lahars. In: Houghton BF, McNutt SR, Rymer H, Stix J (eds) Sigurdsson, H. Academic Press, Encyclopedia of Volcanoes, pp 601–616Google Scholar
  88. Vallance JW, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. Geol Soc Am Bull 109(2):143–163CrossRefGoogle Scholar
  89. Vanneste M, Harbitz CB, de Blasio FV, Glimsdal S, Mienert J, Elverhoi A (2011) Hinlopen-Yermak landlside, arctic ocean - geomorphology, landslide dynamics, and tsunami simulation. In Shipp R, Weimer P, Posamentier H (eds) mass-transport deposits in Deepwater settings: society for sedimentary geology. Special Publication 96:509–527Google Scholar
  90. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, pp 11–33Google Scholar
  91. Virot E, Ponomarenko A, Dehandschoewerck É, Quéré D, Clanet C (2016) Critical wind speed at which trees break. Physical review E: statistical, nonlinear, and soft matter physics. Am Phys Soc 93(2):023001 1–023001 7Google Scholar
  92. Xu Q, Fan X, Huang R, Yin Y, Hou S, Dong X, Tang M (2010) A catastrophic rock slide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes. Landslides 7(1):75–87CrossRefGoogle Scholar
  93. Xu Q, Fan X, Dong X (2012) Characteristics and formation mechanism of a catastrophic rainfall-induces rock avalanche-mud flow in Sichuan, China, 2010. Landslides 9(1):143–154Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Geology and HydrogeologyRWTH-Aachen UniversityAachenGermany
  2. 2.Ministry of Forests, Lands, Natural Resource Operations, and Rural DevelopmentPrince GeorgeCanada

Personalised recommendations