Advertisement

Landslides

, Volume 17, Issue 1, pp 127–145 | Cite as

Investigating landslide susceptibility procedures in Greece

  • Katerina KavouraEmail author
  • Nikolaos Sabatakakis
Original Paper
  • 185 Downloads

Abstract

The study aims to present quantitative-based landslide susceptibility mapping through different procedures. Medium- to small-scale analysis was performed applying the most common statistical methods used for this purpose. For that reason, a complete landslide inventory is also presented consisting of about 209 events from 1913 to 2015 in a selected area in Western Greece. In addition, five predisposing factors (variables) (lithology, slope, elevation, rainfall, land use) were also selected to join the procedure. The methodology avoids susceptibility overestimation by the use of different validation methods. As a consequence, the most suitable and reliable model for the study area is discussed. The susceptibility assessment based on frequency ratio, landslide relative frequency, statistical index, likelihood ratio, and weights-of-evidence statistical models as well as success and prediction curves has also been used for validation. Landslide susceptibility index (LSI) was expressed as an algebraic summary according to bivariate analysis. Taking into account the impact of each variable on landslide susceptibility individually, the LSI is being converted into LSIweight. For that purpose, the results arising from validation procedure are used to attribute statistical weights on each variable included to landslide susceptibility estimation.

Keywords

Landslide susceptibility Western Greece Quantitative analysis Scenarios Modified LSI 

References

  1. Aghdam IN, Pradhan B, Panahi M (2017) Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in Iran. Environ Earth Sci 76(6):237.  https://doi.org/10.1007/s12665-017-6558-0 CrossRefGoogle Scholar
  2. Akgun Α (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9:93–106.  https://doi.org/10.1007/s10346-011-0283-7 CrossRefGoogle Scholar
  3. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44.  https://doi.org/10.1007/s100640050066 CrossRefGoogle Scholar
  4. Armaş I (2012) Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat Hazards 60(3):937–950.  https://doi.org/10.1007/s11069-011-9879-4 CrossRefGoogle Scholar
  5. Atkinson PM, Massari R (1998) Generalized linear modeling of susceptibility to landsliding in the Apennines, Italy. Comput Geosci 24(4):373–385.  https://doi.org/10.1016/S0098-3004(97)00117-9 CrossRefGoogle Scholar
  6. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31CrossRefGoogle Scholar
  7. Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud Geol 65(1):49–65.  https://doi.org/10.3989/egeol.08642.036 CrossRefGoogle Scholar
  8. Beckers A, Beck C, Hubert-Ferrari A, Tripsanas E, Crouzet C, Sakellariou D, Papatheodorou G, De Batist M (2016) Influence of bottom currents on the sedimentary processes at the western tip of the Gulf of Corinth, Greece. Mar Geol 378:312–332.  https://doi.org/10.1016/j.margeo.2016.03.001 CrossRefGoogle Scholar
  9. Brabb Ε (1984) Innovative approaches to landslide hazard and risk mapping. Proceedings 4th ISL, Toronto, Canada 1:307–324Google Scholar
  10. Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59(3):1413–1444.  https://doi.org/10.1007/s11069-011-9844-2 CrossRefGoogle Scholar
  11. Calvello M, Cascini L, Mastroianni S (2013) Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology 182:33–48.  https://doi.org/10.1016/j.geomorph.2012.10.026 CrossRefGoogle Scholar
  12. Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20(2):117–135.  https://doi.org/10.1023/A:1008097111310 CrossRefGoogle Scholar
  13. Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Process Landf 28(10):1125–1142.  https://doi.org/10.1002/esp.545 CrossRefGoogle Scholar
  14. Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng Geol 96(3–4):107–125.  https://doi.org/10.1016/j.enggeo.2007.10.003 CrossRefGoogle Scholar
  15. Cevik E, Topal ΖT (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962.  https://doi.org/10.1007/s00254-003-0838-6 CrossRefGoogle Scholar
  16. Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu AX, Li S (2018) Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ. Article in Press.  https://doi.org/10.1007/s10064-018-1401-8 CrossRefGoogle Scholar
  17. Cho SE (2014) Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability. Eng Geol 171:11–20.  https://doi.org/10.1016/j.enggeo.2013.12.015 CrossRefGoogle Scholar
  18. Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124(1):12–23.  https://doi.org/10.1016/j.enggeo.2011.09.011 CrossRefGoogle Scholar
  19. Chousianitis K, Del Gaudio V, Sabatakakis N, Kavoura K, Drakatos G, Bathrellos GD, Skilodimou HD (2016) Assessment of earthquake-induced landslide hazard in Greece: from arias intensity to spatial distribution of slope resistance demand. Bull Seismol Soc Am 106(1):174–188.  https://doi.org/10.1785/0120150172 CrossRefGoogle Scholar
  20. Chung CJF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399Google Scholar
  21. Corominas J, Van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263.  https://doi.org/10.1007/s10064-013-0538-8 CrossRefGoogle Scholar
  22. Cuomo S, Della Sala M (2013) Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Eng Geol 162:118–127.  https://doi.org/10.1016/j.enggeo.2013.05.010 CrossRefGoogle Scholar
  23. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228.  https://doi.org/10.1016/S0169-555X(01)00087-3 CrossRefGoogle Scholar
  24. Domènech G, Yang F, Guo X, Fan X, Scaringi G, Dai L, He C, Xu Q, Huang R (2018) Two multi-temporal datasets to track the enhanced landsliding after the 2008 Wenchuan earthquake, (version V2) [data set]. Zenodo.  https://doi.org/10.5281/zenodo.1484667
  25. ELOT TS 1501-02-02-01 (2009) Hellenic Technical StandardGoogle Scholar
  26. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250.  https://doi.org/10.1016/j.enggeo.2004.06.001 CrossRefGoogle Scholar
  27. Fan X, Domènech G, Scaringi G, Huang R, Xu Q, Hales TC, Dai L, Yang Q Francis O (2018) Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides, 15(12):2325 2341.  https://doi.org/10.1007/s10346-018-1054-5 CrossRefGoogle Scholar
  28. Fan X, Scaringi G, Domènech G, Yang F, Guo X, Dai L, He C, Xu Q, Huang R (2019) Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth System Science Data, 11(1):35–55.  https://doi.org/10.5194/essd-11-35-2019 CrossRefGoogle Scholar
  29. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):99–111.  https://doi.org/10.1016/j.enggeo.2008.03.014 CrossRefGoogle Scholar
  30. Ferentinos G, Papatheodorou G, Collins MB (1988) Sediment transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. Mar Geol 83(1–4):43–61.  https://doi.org/10.1016/0025-3227(88)90051-5 CrossRefGoogle Scholar
  31. Ferentinos G, Papatheodorou G, Geraga M, Christodoulou D, Fakiris E, Iatrou M (2015) The disappearance of helike-classical Greece-new remote sensing and geological evidence. Remote Sens 7(2):1263–1278.  https://doi.org/10.3390/rs70201263 CrossRefGoogle Scholar
  32. Ferentinou M, Chalkias C (2013) Mapping mass movement susceptibility across Greece with gis, ann and statistical methods. Landslide Sci Pract 1:321–327.  https://doi.org/10.1007/978-3-642-31325-7-42 CrossRefGoogle Scholar
  33. Florsheim JL, Nichols A (2013) Landslide area probability density function statistics to assess historical landslide magnitude and frequency in coastal California. Catena 109:129–138.  https://doi.org/10.1016/j.catena.2013.04.005 CrossRefGoogle Scholar
  34. Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252.  https://doi.org/10.1016/j.earscirev.2016.08.011 CrossRefGoogle Scholar
  35. Glade T, Anderson M, Crozier M (2005) Landslide hazard and risk. Wiley ISBN 0-471-48663-9Google Scholar
  36. Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102(3–4):214–226.  https://doi.org/10.1016/j.enggeo.2008.03.019 CrossRefGoogle Scholar
  37. Gökceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(1–4):147–161.  https://doi.org/10.1016/s0013-7952(97)81260-4 CrossRefGoogle Scholar
  38. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manag 18:623–633CrossRefGoogle Scholar
  39. Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, central Italy. Environmental Management 25(3):247–363.  https://doi.org/10.1007/s002679910020 CrossRefGoogle Scholar
  40. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216.  https://doi.org/10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  41. Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in Central Italy. Earth Planet Sci Lett 195(3–4):169–183CrossRefGoogle Scholar
  42. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184CrossRefGoogle Scholar
  43. Guzzetti F, Mondini AL, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112(1–2):42–66.  https://doi.org/10.1016/j.earscirev.2012.02.001 CrossRefGoogle Scholar
  44. Hadzinakos I, Yannacopoulos D, Faltsetas C, Ziourkas K (1991) Application of the MINORA decision support system to the evaluation of landslide favourability in Greece. Eur J Oper Res 50(1):61–75.  https://doi.org/10.1016/0377-2217(91)90039-X CrossRefGoogle Scholar
  45. Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. John Wiley and Sons, New York, pp 523–602Google Scholar
  46. Heezen BC, Ewing M, Johnson GL (1966) The Gulf of Corinth floor. Deep-Sea Res Oceanogr Abstr 13(3):381–411CrossRefGoogle Scholar
  47. Hovius N, Stark CP, Allen P (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25(3):231–234.  https://doi.org/10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2 CrossRefGoogle Scholar
  48. Hussin HY, Zumpano V, Reichenbach P, Sterlacchini S, Micu M, Van Westen C, Bălteanu D (2016) Different landslide sampling strategies in a grid-based bivariate statistical susceptibility model. Geomorphology 253:508–523.  https://doi.org/10.1016/j.geomorph.2015.10.030 CrossRefGoogle Scholar
  49. Ilia I, Tsangaratos P (2016) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13(2):379–397.  https://doi.org/10.1007/s10346-015-0576-3 CrossRefGoogle Scholar
  50. ISSMGE TC32 (2004) Technical committee on risk assessment and management glossary of risk assessment terms – version 1, July 2004Google Scholar
  51. IUGS (1997) Working Group on Landslides, Committee on Risk Assessment, Quantitative risk assessment for slopes and landslides – the state of the art. In: Cruden DM, Fell (eds) Landslide risk assessment. Balkema, Rotterdam, pp 3–12Google Scholar
  52. Jaiswal P, Van Westen CJ, Jetten V (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng Geol 116(3–4):236–250.  https://doi.org/10.1016/j.enggeo.2010.09.005 CrossRefGoogle Scholar
  53. Kanungo DP, Sarkar S, Sharma S (2011) Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Nat Hazards 59(3):1491–1512.  https://doi.org/10.1007/s11069-011-9847-z CrossRefGoogle Scholar
  54. Kavoura K (2017) Landslide hazard model evaluation in an area of Western Greece. Ph. D Thesis. University of Patras. p 269Google Scholar
  55. Kavoura K, Sabatakakis N, Tsiambaos G (2016) Long term ground displacements due to a large landslide in western Greece. Landslides and engineered slopes. Exp Theory Pract 2:1177–1181.  https://doi.org/10.1201/b21520-142 CrossRefGoogle Scholar
  56. Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece: a statistical analysis. Bull IAEG 43(1):47–60.  https://doi.org/10.1007/BF02590170 CrossRefGoogle Scholar
  57. Koukis G, Tsiambaos G, Sabatakakis N (1994) Slope movements in the Greek territory: a statistical approach. In: Proceedings of 7th international IAEG congress. Balkema, Rotterdam, pp 4621–4628Google Scholar
  58. Koukis G, Tsiambaos G, Sabatakakis N (1996) Landslides in Greece: research evolution and quantitative analysis. In: Senneset K (ed) Proceedings of 7th international symposium on landslides. Balkema, Rotterdam, pp 1935–1940Google Scholar
  59. Koukis G, Pyrgiotis L, Rozos D (1997) Landslide phenomena and stability analysis related with the construction of the Ano Diakopto road deviation, Achaia County, Greece. Engineering geology and the environment. Proc. symposium, Athens, 1997, vol. 1, p 783–788Google Scholar
  60. Koukis G, Sabatakakis N, Nikolaou N, Loupasakis C (2005) Landslide hazard zonation in Greece. Proceedings of the Open Symposium on landslide risk analysis and sustainable disaster management by International. Consortium on Landslides, Washington, USA, 13–14 October 2005, 37:291–296Google Scholar
  61. Koukis G, Sabatakakis N, Ferentinou M, Lainas S, Alexiadou X, Panagopoulos A (2009) Landslide phenomena related to major fault tectonics: rift zone of Corinth Gulf, Greece. Bull Eng Geol Environ 68(2):215–229.  https://doi.org/10.1007/s10064-008-0184-8 CrossRefGoogle Scholar
  62. Koukouvelas I, Doutsos T (1997) The effects of active faults on the generation of landslides in NW Peloponnese, Greece. Engineering Geology and the Environment Eds: Marinos, Koukis, Tsiambaos & Stournaras, Balkema, Rotterdam, ISBN 9054108770Google Scholar
  63. Kouli M, Loupasakis C, Soupios P, Rozos D, Vallianatos F (2014) Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ Earth Sci 72(12):5197–5219.  https://doi.org/10.1007/s12665-014-3389-0 CrossRefGoogle Scholar
  64. Lainas S, Sabatakakis N, Koukis G (2016) Rainfall thresholds for possible landslide initiation in wildfire-affected areas of western Greece. Bull Eng Geol 75(3):883–896.  https://doi.org/10.1007/s10064-015-0762-5 CrossRefGoogle Scholar
  65. Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manag 34(2):223–232.  https://doi.org/10.1007/s00267-003-0077-3 CrossRefGoogle Scholar
  66. Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491.  https://doi.org/10.1080/01431160412331331012 CrossRefGoogle Scholar
  67. Lee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Process Landf 32:2133–2148.  https://doi.org/10.1002/esp.1517 CrossRefGoogle Scholar
  68. Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci 18(8):789–814.  https://doi.org/10.1080/13658810410001702003 CrossRefGoogle Scholar
  69. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41.  https://doi.org/10.1007/s10346-006-0047-y CrossRefGoogle Scholar
  70. Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–855.  https://doi.org/10.1007/s00254-006-0256-7 CrossRefGoogle Scholar
  71. Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43(1–2):120–131.  https://doi.org/10.1007/s00254-002-0616-x CrossRefGoogle Scholar
  72. Lee S, Ryu JH, Min K, Won JS (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf 28(12):1361–1376.  https://doi.org/10.1002/esp.593 CrossRefGoogle Scholar
  73. Malamud B, Turcotte D, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711CrossRefGoogle Scholar
  74. Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15(3–4):213–225.  https://doi.org/10.1016/0169-555X(95)00071-C CrossRefGoogle Scholar
  75. Meinhardt M, Fink M, Tünschel H (2015) Landslide susceptibility analysis in Central Vietnam based on an incomplete landslide inventory: comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology 234:80–97.  https://doi.org/10.1016/j.geomorph.2014.12.042 CrossRefGoogle Scholar
  76. Meten M, Bhandary N, Yatabe R (2015) Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron Disasters 2:9.  https://doi.org/10.1186/s40677-015-0016-7 CrossRefGoogle Scholar
  77. Moreiras S (2005) Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66:345–357.  https://doi.org/10.1016/j.geomorph.2004.09.019 CrossRefGoogle Scholar
  78. Myronidis D, Papageorgioul C, Theophanous S (2016) Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat Hazards 81(1):245–263.  https://doi.org/10.1007/s11069-015-2075-1 CrossRefGoogle Scholar
  79. Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1–2):11–20.  https://doi.org/10.1016/j.enggeo.2009.10.001 CrossRefGoogle Scholar
  80. National Research Council (2004) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. the National Academies Press, Washington, DC.  https://doi.org/10.17226/10946 CrossRefGoogle Scholar
  81. Neuhäuser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9(4):511–528.  https://doi.org/10.1007/s10346-011-0305-5 CrossRefGoogle Scholar
  82. Oh HJ, Lee S, Soedradjat GM (2010) Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci 60(6):1317–1328.  https://doi.org/10.1007/s12665-009-0272-5 CrossRefGoogle Scholar
  83. Papathanassiou G (2012) Estimating slope failure potential in an earthquake prone area: a case study at Skolis Mountain, NW Peloponnesus, Greece. Bull Eng Geol Environ 71(1):187–194.  https://doi.org/10.1007/s10064-010-0344-5 CrossRefGoogle Scholar
  84. Papatheodorou G, Ferentinos G (1997) Submarine and coastal sediment failure triggered by the 1995, M(s) = 6.1 R Aegion earthquake, Gulf of Corinth, Greece. Mar Geol 137(3–4):287–304.  https://doi.org/10.1016/S0025-3227(96)00089-8 CrossRefGoogle Scholar
  85. Pardeshi SD, Autade SE, Pardeshi SS (2013) Landslide hazard assessment: recent trends and techniques. Springer Plus 2(1):523.  https://doi.org/10.1186/2193-1801-2-523 CrossRefGoogle Scholar
  86. Pelletier JD, Malamud BD, Blodgett T, Turcotte DL (1997) Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Eng Geol 48:255–268.  https://doi.org/10.1016/S0013-7952(97)00041-0 CrossRefGoogle Scholar
  87. Polykretis C, Ferentinou M, Chalkias C (2015) A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bull Eng Geol Environ 74(1):27–45.  https://doi.org/10.1007/s10064-014-0607-7 CrossRefGoogle Scholar
  88. Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69(1):749–779.  https://doi.org/10.1007/s11069-013-0728-5 CrossRefGoogle Scholar
  89. Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Gokceoglu C, Pradhan B (2014) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (north of Tehran, Iran). Arab J Geosci 7(5):1857–1878CrossRefGoogle Scholar
  90. Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054.  https://doi.org/10.1007/s12665-009-0245-8 CrossRefGoogle Scholar
  91. Pradhan B, Youssef A (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3:319–326.  https://doi.org/10.1007/s12517-009-0089-2 CrossRefGoogle Scholar
  92. Radbruch DH (1970) Map of relative amounts of landslides in California. US Geological Survey Open-File Report 70-1485, 36 p, map scale 1:500,000. US Geological Survey Open-File Report 85–585Google Scholar
  93. Rautela P and Lakhera R.C. (2000) Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya (India). Int J Appl Earth Obs Geoinf, 2000 (3–4): 153–160. DOI: https://doi.org/10.1016/S0303-2434(00)85009-6, 2CrossRefGoogle Scholar
  94. Regmi N, Giardino J, Vitek J (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115:172–187.  https://doi.org/10.1016/j.geomorph.2009.10.002 CrossRefGoogle Scholar
  95. Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742.  https://doi.org/10.1007/s12517-012-0807-z CrossRefGoogle Scholar
  96. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91CrossRefGoogle Scholar
  97. Remondo J, González A, Díaz de Terán JR, Cendrero A, Fabbri A, Chung C-JF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in northern Spain. Nat Hazards 30(3):437–449.  https://doi.org/10.1023/B:NHAZ.0000007201.80743.fc CrossRefGoogle Scholar
  98. Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environ Earth Sci 63(1):49–63.  https://doi.org/10.1007/s12665-010-0687-z CrossRefGoogle Scholar
  99. Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Nat Hazards 65(1):523–543.  https://doi.org/10.1007/s11069-012-0381-4 CrossRefGoogle Scholar
  100. Sabatakakis N, Tsiambaos G, Rondoyanni TH, Papanakli S, Kavoura K (2015) Deep-seated structurally controlled landslides of Corinth Gulf rift zone, Greece: the case of Panagopoula Landslide, 13th ISRM Congress Proceedings - Int’l Symposium on Rock Mechanics - Innovations in Applied and Theoretical Rock Mechanics. ISBN: 978-1-926872-25-4, p651, 10pGoogle Scholar
  101. Sakkas G, Misailidis I, Sakellariou N, Kouskouna V, Kaviris G (2016) Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis. Nat Hazards 84(3):1873–1904.  https://doi.org/10.1007/s11069-016-2523-6 CrossRefGoogle Scholar
  102. Sarkar S, Roy AK, Raha P (2016) Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. Catena 142:36–46.  https://doi.org/10.1016/j.catena.2016.02.009 CrossRefGoogle Scholar
  103. Schicker R, Moon V (2012) Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology 161–162:40–57.  https://doi.org/10.1016/j.geomorph.2012.03.036 CrossRefGoogle Scholar
  104. Sharma LP, Patel N, Ghose MK, Debnath P (2014) Application of frequency ratio and likelihood ratio model for geo-spatial modelling of landslide hazard vulnerability assessment and zonation: a case study from the Sikkim Himalayas in India. Geocarto Int 29(2):128–146.  https://doi.org/10.1080/10106049.2012.748830 CrossRefGoogle Scholar
  105. Sujatha ER, Rajamanickam V, Kumaravel P, Saranathan E (2013) Landslide susceptibility analysis using probabilistic likelihood ratio model-a geospatial-based study. Arab J Geosci 6(2):429–440.  https://doi.org/10.1007/s12517-011-0356-x CrossRefGoogle Scholar
  106. Taylor FE, Malamud BD, Freeborough K, Demeritt D (2015) Enriching Great Britain’s National Landslide Database by searching newspaper archives. Geomorphology 249:52–68.  https://doi.org/10.1016/j.geomorph.2015.05.019 CrossRefGoogle Scholar
  107. Thiery Y, Malet J-P, Sterlacchini S, Puissante A, Maquaire (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59.  https://doi.org/10.1016/j.geomorph.2007.02.020 CrossRefGoogle Scholar
  108. Tsangaratos P, Ilia I (2016) Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides 13(2):305–320.  https://doi.org/10.1007/s10346-015-0565-6 CrossRefGoogle Scholar
  109. Tsiambaos G, Sabatakakis N, Rondoyanni TH, Depoundis N, Kavoura K (2015) Composite landslides affecting flysch and Neogene weak rock formations induced by heavy rainfalls. 13th ISRM Congress Proceedings - Int’l Symposium on Rock Mechanics - Innovations in Applied and Theoretical Rock Mechanics. ISBN: 978–1–926872-25-4, p651, 10pGoogle Scholar
  110. Van Asch TWJ, Buma J, Van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30(1–2):25–32.  https://doi.org/10.1016/S0169-555X(99)00042-2 CrossRefGoogle Scholar
  111. Van Den Eeckhaut M, Reichenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat. Hazards Earth Syst. Sci. 9:507–521.  https://doi.org/10.5194/nhess-9-507-2009 CrossRefGoogle Scholar
  112. Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414CrossRefGoogle Scholar
  113. Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184.  https://doi.org/10.1007/s10064-005-0023-0 CrossRefGoogle Scholar
  114. Varnes JD (1984) Landslide hazard zonation: a review of principles and practice. UNESCOGoogle Scholar
  115. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington DC., pp. 11–33Google Scholar
  116. Wang G, Sassa K (2003) Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Eng Geol 69(1–2):109–125.  https://doi.org/10.1016/S0013-7952(02)00268-5 CrossRefGoogle Scholar
  117. Wang HB, Li JM, Zhou B, Zhou Y, Yuan ZQ, Chen YP (2017) Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility. Geoenviron Disasters 4:15.  https://doi.org/10.1186/s40677-017-0076-y CrossRefGoogle Scholar
  118. Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Assoc Eng Geol Bull 21(3):337–342Google Scholar
  119. Xu C, Xu X, Yao X, Dai F (2014) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11(3):441–461.  https://doi.org/10.1007/s10346-013-0404-6 CrossRefGoogle Scholar
  120. Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138.  https://doi.org/10.1016/j.cageo.2008.08.007 CrossRefGoogle Scholar
  121. Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey) and susceptibility mapping by means of GIS. Environ Geol 50(4):461–472.  https://doi.org/10.1007/s00254-005-0107-y CrossRefGoogle Scholar
  122. Zhang T, Han L, Chen W, Shahabi H (2018) Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy 20(11):art. no. 884.  https://doi.org/10.3390/e20110884 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of PatrasPatrasGreece

Personalised recommendations