, Volume 16, Issue 11, pp 2259–2276 | Cite as

Combining data-driven models to assess susceptibility of shallow slides failure and run-out

  • Raquel MeloEmail author
  • José L. Zêzere
  • Jorge Rocha
  • Sérgio C. Oliveira
Technical Note


This research is focused on the susceptibility assessment of shallow slides by modeling the failure and run-out areas separately. The shallow slides failure is evaluated using a statistical method (logistic regression) and for the run-out assessment, a simple cellular automata model is proposed. The existence of shallow slides inventories occurred in distinct time periods allowed the separation of data into two independent groups (modeling and validation) and the adoption of the temporal criterion for the independent validation. The logistic regression model showed a very good predictive capacity (area under the receiver operating characteristic curve of 0.90), although it may be overestimated, as well as the susceptibility scores obtained. The run-out modeling, using a simple cellular automata model developed for this study, provided good results, with an overlap between the simulation and the real cases of 77%. Lastly, a final shallow slide susceptibility map was constructed including both failure and run-out areas. This work accomplished a combination of low-cost methodology with limited input data that allowed a good performance of the landslide susceptibility assessment and can be easily applied to other regions.


Shallow slides Susceptibility to failure Logistic regression Run-out modeling Cellular automata 


Funding information

This work was financed by national funds through FCT—Portuguese Foundation for Science and Technology, I.P., under the framework of the project BeSafeSlide—Landslide Early Warning soft technology prototype to improve community resilience and adaptation to environmental change (PTDC/GES-AMB/30052/2017) and by the Research Unit UID/GEO/00295/2019.


  1. Al-shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AAA (2013) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437Google Scholar
  2. Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114:21–36Google Scholar
  3. Avolio MV, Crisci GM, D’Ambrosio D, Di Gregorio S, Iovine G, Rongo R, Spataro W (2003) An extended notion of cellular automata for surface flows modelling. WSEAS Trans Comput 2(4):1080–1085Google Scholar
  4. Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, D’Ambrosio D (2006) Pyroclastic flows modelling using cellular automata. Comput Geosci 32:897–911Google Scholar
  5. Avolio MV, Errera A, Lupiano V, Mazzanti P, Di Gregorio S (2012) VALANCA: a cellular automata model for simulating snow avalanches. J Cell Autom 12(5):309–332Google Scholar
  6. Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P (2013) SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. J Supercomput 65(2):682–696Google Scholar
  7. Bai S, Wang J, Lü G, Zhou P, Hou S, Xu S (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115:23–31Google Scholar
  8. Bai S, Lü G, Wang J, Zhou P, Ding L (2011) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62:139–149Google Scholar
  9. Barpi F, Borri-Brunetto M, Veneri LD (2007) Cellular-automata model for dense-snow avalanches. J Cold Reg Eng 21:121–140Google Scholar
  10. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37(3):315–329Google Scholar
  11. Beguería S, Van Asch THWJ, Malet J-P, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897–1909Google Scholar
  12. Benda LE, Cundy TW (1990) Predicting deposition of debris flows in mountain channels. Can Geotech J 27:409–417Google Scholar
  13. Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59(3):1413–1444Google Scholar
  14. Catani F, Segoni S, Falorni G (2010) An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour Res 46:W05508Google Scholar
  15. Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14Google Scholar
  16. Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472Google Scholar
  17. Clerici A, Perego S, Tellini C, Vescovi P (2010) Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy). Nat Hazards 52:1–29Google Scholar
  18. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271Google Scholar
  19. Corominas J, Copons R, Vilaplana JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. Nat Hazards 30:421–435Google Scholar
  20. Corominas J, Van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263Google Scholar
  21. D’Ambrosio D, Spataro W (2007) Parallel evolutionary modelling of geological processes. Parallel Comput 33:186–212Google Scholar
  22. D’Ambrosio D, Di Gregorio S, Iovine G, Lupiano V, Rongo R, Spataro W (2003a) First simulations of the Sarno debris flows through cellular automata modelling. Geomorphology 54:91–117Google Scholar
  23. D’Ambrosio D, Di Gregorio S, Iovine G (2003b) Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3−hex. Nat Hazards Earth Syst Sci 3:545–559Google Scholar
  24. D’Ambrosio D, Spataro W, Iovine G (2006) Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: an application to debris flows. Comput Geosci 32:861–875Google Scholar
  25. Dahl M-PJ, Mortensen LE, Veihe A, Jensen NH (2010) A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands. Nat Hazards Earth Syst Sci 10:159–170Google Scholar
  26. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228Google Scholar
  27. Dai FC, Lee CF, Sijing W (1999) Analysis of rainstorm-induced slide-debris flows on a natural terrain of Lantau Island, Hong Kong. Eng Geol 51:279–290Google Scholar
  28. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87Google Scholar
  29. Eastman JR (2012) IDRISI Selva Tutorial. IDRISI Production. Clark Labs-Clark University, Worcester, p 45Google Scholar
  30. Environmental Systems Research Institute (ESRI) (2014) ArcGIS desktop help 10.5, spatial analyst, distance toolset, cost path.
  31. Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38(5):982–994Google Scholar
  32. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874Google Scholar
  33. Ferreira AB, Zêzere JL, Rodrigues ML (1987) Instabilité des versants dans la région au Nord de Lisbonne. Essai de cartographie géomorphologique. Finisterra 22(43):227–246Google Scholar
  34. Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111:62–72Google Scholar
  35. Gorsevski PV, Gessler PE, Foltz RB, Elliot WJ (2006) Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans GIS 10(3):395–415Google Scholar
  36. Gregoretti C, Degetto M, Boreggio M (2016) GIS-based cell model for simulating debris flow runout on a fan. J Hydrol 534:326–340Google Scholar
  37. Greiving S, Van Westen C, Corominas J, Glade T, Malet JP, Van Asch T (2014) Introduction: the components of risk governance. In: van Asch et al (eds) Mountain risks: from prediction to management and governance. Advances in natural and technological hazards research, vol 34, pp 1–27. (Chapter 1)CrossRefGoogle Scholar
  38. Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modelling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772Google Scholar
  39. Guillard C, Zêzere JL (2012) Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures Municipality. Environ Manag 50(4):721–735Google Scholar
  40. Guinau M, Vilajosana I, Vilaplana JM (2007) GIS-based debris flow source and runout susceptibility assessment from DEM data: a case study in NW Nicaragua. Nat Hazards Earth Syst Sci 7:703–716Google Scholar
  41. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216Google Scholar
  42. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184Google Scholar
  43. Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides — disaster risk reduction. Springer, Berlin, pp 321–349Google Scholar
  44. Hong H, Pourghasemi HR, Pourtaghi ZS (2016) Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 259:105–118Google Scholar
  45. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992Google Scholar
  46. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194Google Scholar
  47. Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372Google Scholar
  48. Hürlimann M, Medina V, Bateman A, Copons R, Altimir J (2007) Comparison of different techniques to analyse the mobility of debris flows during hazard assessment — case study in La Comella catchment, Andorra. In: Chen CL, Major JJ (eds) Debris-flow hazard mitigation: mechanics, prediction and assessment. Millpress, Netherlands, pp 411–422Google Scholar
  49. IGP (2004) Carta topográfica digital na escala 1:10 000, folhas 389, 390, 403 e 404. LisboaGoogle Scholar
  50. INETI (2005) Carta Geológica da Área Metropolitana de Lisboa na escala 1: 25 000. LisboaGoogle Scholar
  51. Iovine G, Di Gregorio S, Lupiano V (2003) Debris-flow susceptibility assessment through cellular automata modelling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Nat Hazards Earth Syst Sci 3:457–468Google Scholar
  52. Iovine G, D’Ambrosio D, Di Gregorio S (2005) Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterized by strong inertial effects. Geomorphology 66:287–303Google Scholar
  53. Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439Google Scholar
  54. Kutiel H, Trigo RM (2014) The rainfall regime in Lisbon in the last 150 years. Theor Appl Climatol 118(3):387–403Google Scholar
  55. Lai T, Dragićević S (2011) Development of an urban landslide cellular automata model: a case study of North Vancouver, Canada. Earth Sci Inf 4:69–80Google Scholar
  56. Lupiano V, Machado G, Crisci GM, Di Gregorio S (2015) A modelling approach with macroscopic cellular automata for hazard zonation of debris flows and lahars by computer simulations. Int J Geol 9:35–46 ISSN: 1998–4499Google Scholar
  57. Melo R, Zêzere JL (2017a) Avaliação da suscetibilidade à rutura e propagação de fluxos de detritos na bacia hidrográfica do rio Zêzere (Serra da Estrela, Portugal). Rev Bras Geomorfol 18(1):1–26Google Scholar
  58. Melo R, Zêzere JL (2017b) Modeling debris flow initiation and run-out in recently burned areas using data-driven methods. Nat Hazards 88:1373–1407Google Scholar
  59. Melo R, Van Asch T, Zêzere JL (2018) Debris flow run-out simulation and analysis using a dynamic model. Nat Hazards Earth Syst Sci 18:555–570Google Scholar
  60. Milledge DG, Bellugi D, McKean JA, Densmore AL, Dietrich WE (2014) A multidimensional stability model for predicting shallow landslide size and shape across landscapes. J Geophys Res Earth Surf 119:2481–2504Google Scholar
  61. Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99(2):141–153Google Scholar
  62. O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690Google Scholar
  63. O’Brien JS, Julien PY, Fullerton WT (1993) Two dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261Google Scholar
  64. Oliveira SC, Zêzere JL, Catalão J, Nico G (2015) The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides 12:703–719Google Scholar
  65. Oliveira SC, Zêzere JL, Lajas S, Melo R (2017) Combination of statistical and physically based methods to assess shallow slide susceptibility at the basin scale. Nat Hazards Earth Syst Sci 17:1091–1109Google Scholar
  66. Piedade AMM, Zêzere JL, Garcia RAC, Oliveira SC (2011) Modelos de susceptibilidade a deslizamentos superficiais translacionais na região a norte de Lisboa. Finisterra 46(91):9–26Google Scholar
  67. Quan Luna B, Remaître A, Van Asch THWJ, Malet J-P, Van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63–75Google Scholar
  68. Quan Luna B, Blahut J, Van Asch T, Van Westen CJ, Kappes M (2016) ASCHFLOW - a dynamic landslide run-out model for medium scale hazard analysis. Geoenviron Disasters 3:29. CrossRefGoogle Scholar
  69. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77Google Scholar
  70. Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Process Landf 35:157–173Google Scholar
  71. Segoni S, Rossi G, Catani F (2012) Improving basin scale shallow landslide modelling using reliable soil thickness maps. Nat Hazards 61:85–101Google Scholar
  72. Segre E, Deangeli C (1995) Cellular automaton for realistic modelling of landslides. Nonlinear Process Geophys 2:1–15Google Scholar
  73. Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report, vol 247. National Academy Press, Washington, pp 129–177Google Scholar
  74. Spataro W, D’Ambrosio D, Avolio MV, Rongo R, Di Gregorio S (2008) Complex systems modelling with cellular automata and genetic algorithms: an application to lava flows. Proceedings of the 2008 International Conference on Scientific Computing, Las VegasGoogle Scholar
  75. Surdeanu V (1986) Landslides and their role in reservoir silting. In: Slaymaker O, Balteanu D (eds) Geomorphology and land management, Zeitsch, vol 58. Fur Geomorph Suppl.-Bd, pp 165–171Google Scholar
  76. Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679Google Scholar
  77. Tiranti D, Deangeli C (2015) Modelling of debris flow depositional patterns according to the catchment and sediment source area characteristics. Front Earth Sci 3(8):1–14Google Scholar
  78. Van Asch THWJ, Buma J, van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32Google Scholar
  79. Van Asch THWJ, Tang C, Alkema D, Zhu J, Zhou W (2014) An integrated model to assess critical rainfall thresholds for run-out distances of debris flows. Nat Hazards 70:299–311Google Scholar
  80. Van den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410Google Scholar
  81. Van den Eeckhaut M, Reichenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat Hazards Earth Syst Sci 9:507–521Google Scholar
  82. Van Vliet J, White R, Dragicevic S (2009) Modelling urban growth using a variable grid cellular automaton. Comput Environ Urban Syst 33:35–43Google Scholar
  83. Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184Google Scholar
  84. Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131Google Scholar
  85. Van Westen CJ, Ghosh S, Jaiswal P, Martha TR, Kuriakose SL (2013) From landslide inventories to landslide risk assessment; an attempt to support methodological development in India. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 3–20Google Scholar
  86. Vaz E, Arsanjani JJ (2015) Predicting urban growth of the Greater Toronto Area - coupling a Markov cellular automata with document meta-analysis. J Environ Inf 25(2):71–80Google Scholar
  87. Vázquez-Quintero G, Solís-Moreno R, Pompa-García M, Villarreal-Guerrero F, Pinedo-Alvarez C, Pinedo-Alvarez A (2016) Detection and projection of forest changes by using the Markov chain model and cellular automata. Sustainability 8:236. Google Scholar
  88. Vergari F, Della Seta M, Del Monte M, Fredi P, Palmieri L (2011) Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: a contribution to the unbiased selection of causal factors. Nat Hazards Earth Syst Sci 11:1475–1497Google Scholar
  89. Wang LJ, Guo M, Sawada K, Lin J, Zhang J (2015) Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena 135:271–282Google Scholar
  90. Zêzere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 2:73–82Google Scholar
  91. Zêzere JL, Trigo R (2011) Impacts of the North Atlantic Oscillation on landslides. In: Vicente-Serrano S, Trigo R (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean Region, advances in global change research, vol 46, pp 199–212Google Scholar
  92. Zêzere JL, Ferreira AB, Rodrigues ML (1999a) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146Google Scholar
  93. Zêzere JL, Ferreira AB, Rodrigues ML (1999b) Landslides in the north of Lisbon region (Portugal): conditioning and triggering factors. Phys Chem Princ Geomorph 24(10):925–934Google Scholar
  94. Zêzere JL, Reis E, Garcia R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4(1):133–146Google Scholar
  95. Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5:331–344Google Scholar
  96. Zêzere JL, Trigo RM, Fragoso M, Oliveira SC, Garcia RAC (2008) Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with North Atlantic oscillation. Nat Hazards Earth Syst Sci 8:483–499Google Scholar
  97. Zêzere JL, Vaz T, Pereira S, Oliveira SC, Marques R, Garcia RAC (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73(6):2917–2936Google Scholar
  98. Zêzere JL, Pereira S, Melo R, Oliveira SC, Garcia RAC (2017) Mapping landslide susceptibility using data-driven methods. Sci Total Environ 589:250–267Google Scholar
  99. Zizioli D, Meisina C, Valentino R, Montrasio L (2013) Comparison between different approaches to modelling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat Hazards Earth Syst Sci 13:559–573Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Geographical Studies, Institute of Geography and Spatial Planning, Edifício IGOTUniversidade de LisboaLisbonPortugal

Personalised recommendations