pp 1–15 | Cite as

Community participation in landslide risk reduction: a case history from Central Andes, Peru

  • Jan KlimešEmail author
  • Ana Marlene Rosario
  • Roque Vargas
  • Pavel Raška
  • Luis Vicuña
  • Christine Jurt
Thematic Paper


This article describes the intertwined history of scientific research and landslide disaster risk reduction efforts in a small peasant community in the Rampac Grande of the Peruvian Andes. It was struck by a catastrophic landslide in 2009, claiming five fatalities and challenging local knowledge about landslide occurrence and mitigation practices. This article describes collaboration between a team of scientists, comprising both foreign and Peruvian experts and the local community, which started after the 2009 landslide and culminated during the disaster risk reduction (DRR) project which ran from 2016 to 2017. It illustrates the shift from refusing outside intervention to acceptance of the proposed measures and active community participation in their application and maintenance. This was achieved by rethinking the role of local and scientific knowledge during the process of DRR through enhanced communication and the appropriate use of the participative methods. Emphasis is placed on the crucial role played by community representative participation during formulation of the expected outcomes of the DRR, which leads to hazard reduction through the preparation of hazard maps and of the monitoring of landslide movement. Enhanced community development can also be evidenced by the construction of water tanks in the year following termination of the project. Despite the documented short-term success in landslide DRR, defining long-term exit strategy allowing the community to continue applying the measures with necessity of the minimum input from the outside actors is intrinsically difficult and still needs to be resolved.


Community-based risk reduction Risk perceptions Landslides Participative methods Local knowledge Peru 



This article was prepared thanks to the support from the long-term conceptual development research organization (RVO: 67985891) and Czech Science Foundation project “Individual and organizational decision-making in environmental risk reduction: determinants, motivations and efficiency” (no. 16-02521S).

Supplementary material

10346_2019_1203_MOESM1_ESM.pdf (74 kb)
ESM 1 (PDF 74 kb)
10346_2019_1203_MOESM2_ESM.jpg (553 kb)
ESM 2 (JPG 552 kb)
10346_2019_1203_Fig6_ESM.png (2.8 mb)

(PNG 2883 kb)

10346_2019_1203_MOESM3_ESM.tif (6.1 mb)
High Resolution Image (TIF 6198 kb)
10346_2019_1203_MOESM4_ESM.pdf (1.9 mb)
ESM 4 (PDF 1972 kb)


  1. Adger N, Hughes T, Folke C, Carpenter S, Rockstrom J (2005) Social-ecological resilience to coastal disasters. Science 309:1036–1042CrossRefGoogle Scholar
  2. Agrawal A (1995) Dismantling the divide between indigenous and scientific knowledge. Dev Chang 26:413–439CrossRefGoogle Scholar
  3. Ahmed B, Kelman I (2018) Measuring community vulnerability to environmental hazards: a method for combining quantitative and qualitative data. Nat Hazard Rev 19(3):04018008CrossRefGoogle Scholar
  4. Alexander GL, Bennett A (2005) Case studies and theory development in the social sciences. MIT Press, CambridgeGoogle Scholar
  5. Ames AM, Francou B (1995) Cordillera Blanca—glaciares en la historia. B Inst Etud Andines 24:37–64Google Scholar
  6. Anderson MG, Holcombe E, Blake JR, Ghesquire F, Holm-Nielsen N, Fisseha T (2011) Reducing landslide risk in communities: evidence from the Eastern Caribbean. Appl Geogr 31:590–599CrossRefGoogle Scholar
  7. Banba M, Shaw R (2017) Land use management in disaster risk reduction. Springer, New YorkCrossRefGoogle Scholar
  8. Cannon T, Schipper L (eds) (2014) World Disasters Report 2014: focus on culture and risk. International Federation of Red Cross and Red Crescent Societies, GenevaGoogle Scholar
  9. Carey M (2010) In the shadow of melting glaciers—climate change and Andean society. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. Carey M, Huggel C, Bury J, Portocarrero C, Haeberli W (2012a) An integrated socio-environmental framework for climate change adaptation and glacier hazard management: lessons from Lake 513, Cordillera Blanca, Peru. Clim Chang 112:733–767CrossRefGoogle Scholar
  11. Carey M, French A, O’Brian E (2012b) Unintended effects of technology on climate change adaptation: an historical analysis of water conflicts below Andean glaciers. J Hist Geogr 38:181–191CrossRefGoogle Scholar
  12. COFOPRI (Comisión de Formalización de la Propiedad Informal) (n.d.) Accessed August 2018
  13. Crasnow S (2017) Process tracing in political science: what’s the story? Stud Hist Philos Sci Part A 62:6–13CrossRefGoogle Scholar
  14. Dekens J (2007) Local knowledge for disaster preparedness: a literature review. International Centre for Integrated Mountain Development, KathmanduGoogle Scholar
  15. Diez A (2012) Introdución—Las comunidades campesinas como procesos. In: Diez A (ed) Tensiones y transformaciones en comunidades campesinas. Pontifíca Universidad Católica del Perú, Lima, 2012 ISBN: 978-612-45732-55Google Scholar
  16. Djalante R, Holley C, Thomalla F (2011) Adaptive governance and managing resilience to natural hazards. Int J Disaster Risk Sci 2:1–14CrossRefGoogle Scholar
  17. Engdahl E, Lidskog R (2014) Risk, communication and trust: towards an emotional understanding of trust. Public Underst Sci 23:703–717CrossRefGoogle Scholar
  18. Fathani TF, Karnawati D, Wilopo W (2016) An integrated methodology to develop a standard for landslide early warning systems. Nat Hazards Earth Syst Sci 16:2123–2135. CrossRefGoogle Scholar
  19. Finlay PJ, Fell R (1997) Landslides: risk perception and acceptance. Can Geotech J 34:169–188CrossRefGoogle Scholar
  20. Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70CrossRefGoogle Scholar
  21. Gaillard JC, Mercer J (2013) From knowledge to action. Bridging gaps in disaster risk reduction. Prog Hum Geogr 37:93–114CrossRefGoogle Scholar
  22. GAPHAZ 2017 Assessment of glacier and permafrost hazards in mountain regions—technical guidance document. Prepared by Allen, S., Frey, H., Huggel, C. et al. Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA). Zurich, Switzerland / Lima, Peru, p. 72Google Scholar
  23. Gutierrez FM et al (2004) Mapa de peligro, plan de usos del suelo y medidas de mitigacion ante desastres, ciudad de Carhuaz. Proyecto INDECI PNUD PER/02/051, Carhuaz, p 222Google Scholar
  24. Huggel CMS, Albrecht F, Andres N, Calanca P, Jurt C, Khabarov N, Mira-Salama D, Rohrer M, Salzmann N, Silva Y, Silvestre E, Vicuña L, Zappa M (2015) A framework for the science contribution in climate adaptation: experiences from science-policy processes in the Andes. Environ Sci Pol 47:80–94 ISSN 1462-9011CrossRefGoogle Scholar
  25. INEI (2018) Instituto Nacional de Estadistica e Informatica. Lima, Peru. Accessed 14th June 2019
  26. Jurt C (2009) Perceptions of natural hazards in the context of social, cultural, economic, and political risks: a case study in South Tyrol. Dissertation. University of BernGoogle Scholar
  27. Jurt C, Burga MD, Vicuña L, Huggel C, Orlove B (2015) Local perceptions in climate change debates: insights from case studies in the Alps and the Andes. Clim Chang 133:511–523. CrossRefGoogle Scholar
  28. Kasser GA, Ames A, Zamora M (1990) Glacier fluctuations and climate in the Cordillera Blanca, Peru. Ann Glaciol 14:136–140CrossRefGoogle Scholar
  29. Klenk N, Fiume A, Meehan K, Gibbes C (2017) Local knowledge in climate adaptation research: moving knowledge frameworks from extraction to co-production. WIREs Clim Change 2017(8):e475. CrossRefGoogle Scholar
  30. Klimeš J, Vilímek V (2011) A catastrophic landslide near Rampac Grande in the Cordillera Negra, northern Peru. Landslides 8:309–320CrossRefGoogle Scholar
  31. Košťák B, Vilímek V, Zapata L (2002) Registration of microdisplacements at a Cordillera Blanca fault scarp. Acta Montana IRSM AS CR 19:61–74Google Scholar
  32. Krüger F, Bankoff G, Cannon T, Orlowski B, Schipper ELF e (2015) Cultures and disasters: understanding cultural framings in disaster risk reduction. Routledge, LondonCrossRefGoogle Scholar
  33. Lacroix P, Berthier E, Maquerhua ET (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens Environ 165:148–158. CrossRefGoogle Scholar
  34. Lassa JA (2010) Institutional vulnerability and governance of disaster risk reduction: macro, meso and micro scale assessment (with case studies from Indonesia). Doctoral dissertation, Bonn University, GermanyGoogle Scholar
  35. Lupton D (1999) Risk and sociocultural theory: new directions and perspectives. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Maskrey A (1989) Disaster mitigation: a community based approach. (development guidelines). Oxfam, Oxford, p. 100Google Scholar
  37. McCalpin J (1984) Preliminary age classification of landslides for inventory mapping. Proceedings 21st annual Engineering Geology and Soils Engineering Symposium, University of Idaho, Moscow, Idaho, 5-6 April 1984, pp. 99–111Google Scholar
  38. Mercer J, Kelman I, Dekens J (2009) Integrating indigenous and scientific knowledge for disaster risk reduction. In: Shaw R, Sharma A, Takeuchi Y (eds) Indigenous knowledge and disaster risk reduction. Nova Science Publishers, Inc, New York, pp 115–131Google Scholar
  39. Mercer J, Kelman I, Taranis L, Suchet-Pearson S (2010) Framework for integrating indigenous and scientific knowledge for disaster risk reduction. Disasters 34:214–239CrossRefGoogle Scholar
  40. Muñoz AR, Gonzales C, Price K, Rosario A, Huggel C, Frey H, García J, Cochachin A, Portocarrero C, Mesa L (2016) Managing glacier related risks disaster in the Chucchún catchment, Cordillera Blanca, Peru. In: Salzmann N, Huggel C, Nussbaumer S, Ziervogel G (eds.) Climate change adaptation strategies—an upstream-downstream perspective, Springer, Cham, pp. 59–78.
  41. Naess LO (2013) The role of local knowledge in climate change adaptation. WIREs Clim Change 4:99–106. CrossRefGoogle Scholar
  42. Plafker G, Ericksen GE, Concha JF (1971) Geological aspects of the May 31, 1970, Perú earthquake. Bull Seismol Soc Am 61:543–578Google Scholar
  43. Rajchl M, Hroch T, Nývlt D, Šebesta J, Vít J, Kopáčková V (2011) Exogenic natural hazards affecting middle and lower catchements of Piura and Chira rivers (Region Piura, Northern Peru, in Czech). Geosci Res Rep 44:218–222Google Scholar
  44. Raška P (2018) Community-based landslide risk reduction: an evolutionary perspective. Landslides.
  45. Raška P, Klimeš J, Dubišar J (2015) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development. Land Degrad Dev 26:142–157CrossRefGoogle Scholar
  46. Roedl B (1998) In the name of Inca Túpac Amaru (in Czech). Scriptorium, PragueGoogle Scholar
  47. Salazar HFS (2009) Estimación de riesgo del centro poblado rural de Rampac Grande. Gobierno Regional de Ancash, Sub Gerencia de Defensa Civil, Huaráz, p 50Google Scholar
  48. Sassa K (2017) The 2017 Ljubljana Declaration on landslide risk reduction and the Kyoto 2020 Commitment for global promotion of understanding and reducing landslide disaster risk. Landslides 14(4):1289–1296. CrossRefGoogle Scholar
  49. Sassa K, Guzzetti F, Yamagishi H, Arbanas Ž, Casagli N, McSaveney M, Dang K eds (2018a) Landslide dynamics: ISDR-ICL landslide interactive teaching tools: Volume 1: Fundamentals, mapping and monitoring. Springer International Publishing, p 604Google Scholar
  50. Sassa K, Tiwari B, Liu KF, McSaveney M, Strom A, Setiawan H eds (2018b) Landslide dynamics: ISDR-ICL landslide interactive teaching tools: Volume 2: Testing, risk management and country practices. Springer International Publishing, p 836Google Scholar
  51. Schuster RL, Hihgland LM (2007) The third Hans Cloos lecture. Urban landslides: socioeconomic impacts and overview of mitigative strategies. Bull Eng Geol Environ 66:1–27. CrossRefGoogle Scholar
  52. SICCAM (2016) Directorio de comunidades campesinas del Perú. Instituto del Bien Común, CEPES, LimaGoogle Scholar
  53. Sjöberg L (1999) Risk perception by the public and by experts: a dilemma in risk management. Hum Ecol Rev 6:1–9Google Scholar
  54. Slovic P, Fischhoff B, Lichtenstein S (2000) Rating the risks. In: Slovic P (ed) Risk perception. Earthscan, London, pp 104–120Google Scholar
  55. Steele PR, Allen CJ (2004) Handbook of Inca mythology. ABC-CLIO, Santa BarbaraGoogle Scholar
  56. Strozzi T, Klimeš J, Frey H, Caduff R, Huggel C, Wegmüller U, Rapre AC (2018): Satellite SAR interferometry for the improved assessment of the state of activity of landslides: a case study from the cordilleras of Peru. Remote Sens EnvGoogle Scholar
  57. Vilímek V, Klimeš J, Vlčko J, Carreño R (2006) Catastrophic debris flows near Machu Picchu village (Aguas Calientes), Peru. Environ Geol 50:1041–1052CrossRefGoogle Scholar
  58. Vilímek V, Hanzlík J, Sládek I, Šandov M, Santillán N (2013) The share of landslides in the occurrence of natural hazards and the significance of El Niño in the Cordillera Blanca and Cordillera Negra Mountains, Peru. In: Sassa K, Rouhban B, Briceño S, McSaveney M, He B (eds) Landslides: global risk preparedness. Springer, Berlin, pp 133–148CrossRefGoogle Scholar
  59. Vilímek V, Klimeš J, Torres MZ (2016) Reassessment of the development and hazard of the Rampac Grande landslide, Cordillera Negra, Peru. Geoenviron Disaster 3:5. CrossRefGoogle Scholar
  60. Vincent S (2018) Transformations of collectivism and individualism in the Peruvian Central Andes: a comunidad over three decades. Ethnography 19:63–83CrossRefGoogle Scholar
  61. Wagner K (2007) Mental models of flash floods and landslides. Risk Anal 27:671–682CrossRefGoogle Scholar
  62. Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21:337–342Google Scholar
  63. Zamora MC (1966) Deslizamento de tierras en Rampac Chico (Carhuaz). Unpublished report Electroperu S.A., Glaciology y Seguridad Lagunas, Huarás, Ancash, Peru, p. 4Google Scholar
  64. Zapata ML (1972) Deslizamentos de tierrasen Rampac Chico, provincia de Carhuaz. Unpublished report Electroperu S.A., Glaciology y Seguridad Lagunas, Huarás, Ancash, Peru. I-Geotec-007, p. 3Google Scholar
  65. Zapata ML (2002) La dinamica glaciar en lagunas de la Cordillera Blanca. Acta Montana IRSM AS CR, Ser A 19:37–60Google Scholar
  66. Zent S (2013) Processual perspectives on traditional environmental knowledge: continuity, erosion, transformation, innovation. Understanding cultural transmission in anthropology: a critical synthesis. Berghahn Books, New York and OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering GeologyInstitute of Rock Structure and Mechanics of The Czech Academy of SciencesPrague 8Czech Republic
  2. 2.Department of Mountain EcosystemsInstituto Nacional de Investigación en Glaciares y Ecosistemas de MontañaHuaraz, AncashPeru
  3. 3.Department of Glacier ResearchInstituto Nacional de Investigación en Glaciares y Ecosistemas de MontañaHuaraz, AncashPeru
  4. 4.Department of Geography, Faculty of ScienceJan Evangelista Purkyně UniversityÚstí nad LabemCzech Republic
  5. 5.Department of GeographyUniversity of ZurichZürichSwitzerland

Personalised recommendations