Geographic origin of migratory birds based on stable isotope analysis: the case of the greylag goose (Anser anser) wintering in Camargue, southern France

  • Matthieu GuillemainEmail author
  • Leo Bacon
  • Kevin J. Kardynal
  • Anthony Olivier
  • Michal Podhrazsky
  • Petr Musil
  • Keith A. Hobson
Original Article


Proper delineation of flyways is a prerequisite for adequate management of migratory birds. The implementation of coordinated international management for greylag goose (Anser anser) is currently underway in Europe for the north-west/south-west (NW/SW) population. Some uncertainty remained as to whether greylags wintering in Camargue, Southern France, belonged to this population and bred in Norway, Sweden and Finland, or rather originated from the Central European population, especially since most neck collar observations were of birds ringed in the Czech Republic. Stable hydrogen isotope (δ2H) analyses of feathers from 147 individuals hunted or trapped during winter in Camargue provide some insight into this question and suggest north-central Europe as a more likely area of origin. This indicates that greylags wintering along the Mediterranean coast may be largely separate from the birds of the NW/SW European population breeding in Fennoscandia, although some individuals may also come from the Polish or German regions of the NW/SW flyway, since the combined ringing and stable isotope analyses suggest these birds are mostly breeding and moulting in an isotopic area consistent with the Czech Republic, Poland and northern Germany. Earlier studies show birds wintering in other French regions rather originate from Sweden and Norway. These results should be considered for the management plan currently being developed for greylag goose in Europe. More generally, they question whether birds from two distinct populations/flyways should be applied similar or potentially different management plans within a given country.


Anser anser Greylag goose Flyway delineation International management plans Deuterium Stable isotopes 



We would first like to thank the Camargue hunters, especially those from the Tour du Valat hunting group, for providing the greylag feathers. We also thank the Camargue ornithologists who have provided their resightings of neck-collared birds, as well as the Centre de Recherches sur la Biologie des Populations d’Oiseaux, Muséum National d’Histoire Naturelle, especially Olivier Dehorter and all the ringers in Central Europe who contributed to this dataset, for the ring recovery data. The neck collar observation data for the Camargue were kindly provided by Lisenka de Vries for We also greatly appreciated the valuable information provided by Ingolf Todte, Tomasz Mokwa and Łukasz Ławicki. Tony Fox, Richard Inger, Ruedi Nager, Christian Gortázar and an anonymous referee provided valuable comments on an earlier version of the manuscript.

Supplementary material

10344_2019_1304_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)


  1. Bacon L, Madsen J, Jensen GH, de VL, Follestad A, Koffijberg K, Kruckenberg H, Loonen M, Månsson J, Nilsson L, Voslamber B, Guillemain M (2019) Spatio–temporal distribution of greylag goose Anser anser resightings on the north-west/south-west European flyway: guidance for the delineation of transboundary management units. Wildl Biol 2019.
  2. BirdLife International, NatureServe (2011) Bird species distribution maps of the world. Birdlife International and NatureServe, Cambridge and ArlingtonGoogle Scholar
  3. Bivand RS, Lewin-Koh N (2015) Maptools Version 0.8-37. Google Scholar
  4. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348CrossRefGoogle Scholar
  5. Bradbeer DR, Rosenquist C, Christensen TK, Fox AD (2017) Crowded skies: conflicts between expanding goose populations and aviation safety. Ambio 46(Suppl.2):S290–S300CrossRefGoogle Scholar
  6. Dehorter O, CRBPO (2018) Base de données de baguage et de déplacements d’oiseaux de France/Bird ringing and movement database for France. Centre de Recherches sur la Biologie des Populations d’Oiseaux, Muséum National d’Histoire Naturelle, Paris. Exctracted on 14th February 2018
  7. Desnouhes L, Pichaud M, Le Clainche N, Mesléard F, Giroux JF (2003) Activity budget of an increasing wintering population of greylag geese Anser anser in southern France. Wildfowl 54:41–51Google Scholar
  8. Dick G, Baccetti N, Boukhalfa D, Darolova A, Faragó S, Hudek K, Leito A, Markkola J, Witkowski J (1999) Greylag goose Anser anser: Central Europe/North Africa. In: Madsen J, Cracknell G, Fox T (eds) Goose populations of the western Palearctic. Wetlands International publication no. 48. National Environmental Research Institute, Rönde, pp 202–213Google Scholar
  9. Fouquet M, Schricke V, Fouque C (2009) Greylag geese Anser anser depart earlier in spring: an analysis of goose migration from western France over the years 1980-2005. Wildfowl 59:143–151Google Scholar
  10. Fox AD, Madsen J (2017) Threatened species to super-abundance: the unexpected international implications of successful goose conservation. Ambio 46(Suppl.2):S179–S187CrossRefGoogle Scholar
  11. Fox AD, Elmberg J, Tombre IM, Hessel R (2017) Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biol Rev 92:854–877CrossRefGoogle Scholar
  12. Gaudard C, Quaintenne G, Ward A, Dronneau C, Dalloyau S (2018) Synthèse des dénombrements d’Anatidés, de foulques et de limicoles hivernant en France à la mi-janvier 2017. Ligue pour la Protection des Oiseaux, RochefortGoogle Scholar
  13. Guillemain M, Van Wilgenburg SL, Legagneux P, Hobson KA (2014) Assessing geographic origins of teal (Anas crecca) through stable-hydrogen (δ2H) isotope analyses of feathers and ring-recoveries. J Ornithol 155:165–172CrossRefGoogle Scholar
  14. Guillemain M, Calenge C, Champagnon J, Hearn R (2017) Determining the boundaries of migratory bird flyways: a Bayesian model for Eurasian teal Anas crecca in western Europe. J Avian Biol 48:1331–1341CrossRefGoogle Scholar
  15. Hijmans RJ (2015) Raster version 2.3-24. Accessible at
  16. Hobson KA (2018) Application of isotopic methods for tracking animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes, Second edn. Academic Press, London, pp 85–116CrossRefGoogle Scholar
  17. Hobson KA, Wassenaar LI (eds) (2018) Tracking animal migration with stable isotopes, Second edn. Academic Press, LondonGoogle Scholar
  18. Hobson KA, Wunder MB, Van Wilgenburg SL, Clark RG, Wassenaar LI (2009) A method for investigating population declines of migratory birds using stable isotopes: origins of harvested lesser scaup in North America. PLoS One 4:e7915. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hudec K (2008) Husa velká Anser anser. In: Cepák J, Klvaňa P, Formánek J, Horák D, Jelínek M, Schröpfer L, Škopek J, Zárybnický J (eds) Altas migrace ptáků. České a Slovenské republiky. Czech and Slovak bird migration atlas. Aventinum, Prague, pp 112–115Google Scholar
  20. Jensen GH, Fox AD, Christensen TK, Clausen P, Koffijberg K, Liljebäck N, Mitchell C, Nilsson L, Alhainen M (2018) Taiga bean goose population status report 2017–2018. Report from the AEWA European Goose Management Platform Data Centre. Available from
  21. Korner-Nievergelt F, Liechti FHS (2012) Migratory connectivity derived from sparse ring reencounter data with unknown numbers of ringed birds. J Ornithol 153:771–782CrossRefGoogle Scholar
  22. Kraus RHS, van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC, Prins HT (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55CrossRefGoogle Scholar
  23. Madsen J, Tjørnløv RS, Frederiksen M, Mitchell C, Sigfússon AT (2014) Connectivity between flyway populations of waterbirds: assessment of rates of exchange, their causes and consequences. J Appl Ecol 51:183–193CrossRefGoogle Scholar
  24. Madsen J, Williams JH, Johnson FA, Tombre IM, Dereliev S, Kuijken E (2017) Implementation of the first adaptive management plan for a European migratory waterbird population: the case of the Svalbard pink-footed goose Anser brachyrhynchus. Ambio 46(Suppl.2):S275–S289CrossRefGoogle Scholar
  25. Massez G (2009) Oie cendrée Anser anser. In: Flitti A, Kabouche B, Kayser Y, Olioso G (eds) Atlas des oiseaux nicheurs de Provence-Alpes-Cote d’Azur. Delachaux et Niestlé, Paris, pp 40–41Google Scholar
  26. Mitchell C, Fox AD (1999) Feral greylag geese Anser anser: United Kingdom. In: Madsen J, Cracknell G, Fox T (eds) Goose populations of the western Palearctic. Wetlands International Publication No. 48. National Environmental Research Institute, Rönde, pp 178–180Google Scholar
  27. Nilsson L, Follestad A, Koffijberg K, Kuijken E, Madsen J, Mooij J, Mouronval JB, Persson H, Schricke V, Voslamber B (1999) Greylag goose Anser anser: Northwest Europe. In: Madsen J, Cracknell G, Fox T (eds) Goose populations of the western Palearctic. Wetlands International Publication No. 48. National Environmental Research Institute, Rönde, pp 182–201Google Scholar
  28. Office National de la Chasse et de la Faune Sauvage (2014) Amélioration des connaissances sur l’oie cendrée en France. Rapport final. ONCFS, ParisGoogle Scholar
  29. Podhrázský M, Musil P, Musilová Z, Zouhar J, Adam M, Závora J, Hudec K (2017) Central European greylag geese Anser anser show a shortening of migration distance and earlier spring arrival over 60 years. Ibis 159:352–365CrossRefGoogle Scholar
  30. Powolny T, Jensen GH, Nagy S, Czajkowski A, Fox AD, Lewis M, Madsen J (Compilers) (2018) AEWA international single species management plan for the greylag goose (Anser anser) - northwest/southwest European population. AEWA Technical Series, BonnGoogle Scholar
  31. R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for statistical computing, ViennaGoogle Scholar
  32. Reckerth A, Stichler W, Schmidt A, Stumpp C (2017) Long-term data set analysis of isotopes in German rivers. J Hydrol 552:718–731CrossRefGoogle Scholar
  33. Royle JA, Rubenstein DR (2004) The role of species abundance in determining breeding origins of migratory birds with stable isotopes. Ecol Appl 14:1780–1788CrossRefGoogle Scholar
  34. Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International, WageningenGoogle Scholar
  35. StatSoft (2011) STATISTICA, version 10.
  36. Van der Zanden HB, Wunder MB, Hobson KA, Van Wilgenburg SL, Wassenaar LI, Welker JM, Bowen GJ (2015) Space-time tradeoffs in the development of precipitation isotope models for determining migratory origin. J Avian Biol 46:658–667CrossRefGoogle Scholar
  37. Van Dijk JGB, Meissner W, Klaassen M (2014) Improving provenance studies in migratory birds when using feather hydrogen stable isotopes. J Avian Biol 45:103–108CrossRefGoogle Scholar
  38. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Healt S 39:1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthieu Guillemain
    • 1
    Email author
  • Leo Bacon
    • 1
  • Kevin J. Kardynal
    • 2
  • Anthony Olivier
    • 3
  • Michal Podhrazsky
    • 4
    • 5
  • Petr Musil
    • 6
  • Keith A. Hobson
    • 2
    • 7
  1. 1.Office National de la Chasse et de la Faune SauvageUnité Avifaune MigratriceArlesFrance
  2. 2.Environment and Climate Change CanadaSaskatoonCanada
  3. 3.Centre de Recherche de la Tour du ValatArlesFrance
  4. 4.ZOO Dvur KraloveDvur Kralove nad LabemCzech Republic
  5. 5.Department of Zoology, Faculty of Natural ScienceCharles UniversityPrague 2Czech Republic
  6. 6.Department of Ecology, Faculty of Environmental SciencesCzech University of Life SciencesPrague 6Czech Republic
  7. 7.Department of BiologyUniversity of Western OntarioLondonCanada

Personalised recommendations