Advertisement

Retention of solutes and particles in the gastrointestinal tract of a grazing cervid: Père David’s deer (Elaphurus davidianus)

  • Jill Derix
  • Sylvia Ortmann
  • Lisa Wiegmann
  • Arne Lawrenz
  • Geert Paul Jules Janssens
  • Marcus ClaussEmail author
Original Article

Abstract

Ruminants are classified into three groups, according to their feeding behaviour: browsers, intermediate feeders and grazers. Corresponding to their dietary preferences, multiple morphological and physiological adaptations have been described, resulting in another classification: ‘moose-type’ and ‘cattle-type’ ruminants. Digesta retention patterns in the gastrointestinal tract (GIT) and reticulorumen (RR) are considered major criteria to distinguish these types, as cattle-type ruminants show shorter retention of fluids (measured by a solute marker) than of particles, while in moose-type ruminants, both are retained for more similar periods. To what extent these digestive types are specific to phylogenetic lineages is still unclear. We measured mean retention times (MRTs) of solutes and particles (2 and 20 mm) in the strictest grazing cervid: the Père David’s deer (Elaphurus davidianus; n = 5; body mass = 155.0 ± 14.5 kg). The MRTs of solutes, small and large particles in the GIT were 34 ± 4, 60 ± 7 and 69 ± 9 h, respectively. The ratio of the MRT of small particles versus solutes in the RR was 2.0 ± 0.1, similar to other cattle-type ruminants. The results confirm the hypothesis that Père David’s deer can be classified as cattle-type ruminants, corresponding to both dietary preferences and previously described morphological traits. The results complement previous findings, showing that both cattle-type and moose-type physiologies are found among bovids as well as cervids, indicating that these digestion types can be considered convergent adaptations.

Keywords

Browser-grazer dichotomy Digestive physiology Père David’s deer Reticulorumen Selectivity factor 

Notes

Acknowledgements

We thank Heidrun Barleben for the marker analyses and Herman de Rycke for the analyses on nutrition and faeces. We also thank the zookeepers of Zoo Wuppertal for support and assistance in the handling of the animals, particularly the following: Jürgen Abend, Frank Soumagne, Andrea Becker, Boris Kostka, Jörg Effenberger, Kevin Büttner, Roland Stöter and Malena Reeh. Furthermore, special thanks to veterinary nurses Laura Cyrener and Katrin Gries, and zoo curators Silja Herberg and Severin Dressen, and three reviewers for comments on the manuscript.

References

  1. AOAC (1995) Official methods of analysis of AOAC International. Association of Official Analytical Chemists, Arlington VAGoogle Scholar
  2. Asher GW (2011) Reproductive cycles of deer. Anim Reprod Sci 124:170–175CrossRefGoogle Scholar
  3. Beck B, Wemmer C (1983) The biology and management of an extinct species: Père David’s deer. Noyes Publications, ParkridgeGoogle Scholar
  4. Behrend A, Lechner-Doll M, Streich WJ, Clauss M (2004) Seasonal faecal excretion, gut fill, liquid and particle marker retention in mouflon (Ovis ammon musimon), and a comparison with roe deer (Capreolus capreolus). Acta Theriol 49:503–515CrossRefGoogle Scholar
  5. Cantalapiedra JL, FitzJohn RG, Kuhn TS, Fernández MH, DeMiguel D, Azanza B, Morales J, Mooers AØ (2014) Dietary innovations spurred the diversification of ruminants during the Caenozoic. Proc R Soc B 281:20132746CrossRefGoogle Scholar
  6. Cerling TE, Andanje SA, Blumenthal SA, Brown FH, Chritz KL, Harris JM, Hart JA, Kirera FM, Kaleme P, Leakey LN, Leakey MG (2015) Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 ma. PNAS 112:11467–11472CrossRefGoogle Scholar
  7. Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327CrossRefGoogle Scholar
  8. Clauss M, Hummel J, Streich WJ (2006) The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. Eur J Wildl Res 52:88–98CrossRefGoogle Scholar
  9. Clauss M, Fritz J, Bayer D, Nygren K, Hammer S, Hatt J-M, Südekum K-H, Hummel J (2009a) Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comp Biochem Physiol A 152:398–406CrossRefGoogle Scholar
  10. Clauss M, Hofmann RR, Fickel J, Streich WJ, Hummel J (2009b) The intraruminal papillation gradient in wild ruminants of different feeding types: implications for rumen physiology. J Morphol 270:929–942CrossRefGoogle Scholar
  11. Clauss M, Hume ID, Hummel J (2010) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4:979–992CrossRefGoogle Scholar
  12. Clauss M, Lunt N, Ortmann S, Plowman A, Codron D, Hummel J (2011) Fluid and particle passage in three duiker species. Eur J Wildl Res 57:143–148CrossRefGoogle Scholar
  13. Codron D, Clauss M (2010) Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Can J Zool 88:1129–1138CrossRefGoogle Scholar
  14. Codron D, Brink JS, Rossouw L, Clauss M (2008) The evolution of ecological specialization in southern African ungulates: competition- or physical environmental turnover? Oikos 117:344–353CrossRefGoogle Scholar
  15. Darlis NA, Liang JB, Ho YW (2012) Effects of diets of differing fiber contents on digestibility, passage rate of digesta and heat production in lesser mouse deer (Tragulus javanicus). Mamm Biol 77:385–390CrossRefGoogle Scholar
  16. DeMiguel D, Fortelius M, Azanza B, Morales J (2008) Ancestral feeding state of ruminants reconsidered: earliest grazing adaptation claims a mixed condition for Cervidae. BMC Evol Biol 8:13CrossRefGoogle Scholar
  17. Dittmann MT, Hummel J, Hammer S, Arif A, Hebel C, Müller DWH, Fritz J, Steuer P, Schwarm A, Kreuzer M, Clauss M (2015a) Digesta retention in gazelles in comparison to other ruminants: evidence for taxon-specific rumen fluid throughput to adjust digesta washing to the natural diet. Comp Biochem Physiol A 185:58–68CrossRefGoogle Scholar
  18. Dittmann MT, Runge U, Ortmann S, Lang RA, Moser D, Galeffi C, Schwarm A, Kreuzer M, Clauss M (2015b) Digesta retention patterns of solutes and different-sized particles in camelids compared with ruminants and other foregut fermenters. J Comp Physiol B 185:559–573CrossRefGoogle Scholar
  19. Frei S, Ortmann S, Reutlinger C, Kreuzer M, Hatt J-M, Clauss M (2015) Comparative digesta retention patterns in ratites. Auk Ornithol Adv 132:119–131Google Scholar
  20. Hofmann RR (1985) Digestive physiology of deer - their morphophysiological specialisation and adaptation. Roy Soc N Z Bull 22:393–407Google Scholar
  21. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457CrossRefGoogle Scholar
  22. Hofmann RR (1991) Endangered tropical herbivores - their nutritional requirements and habitat demands. In: Ho YW, Wong HK, Abdullah N, Tajuddin ZA (eds) Recent advances on the nutrition of herbivores. Malaysia Society of Animal Production, UPM Serdang, pp 27–34Google Scholar
  23. Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habit of east African ruminants. Mammalia 36:226–240CrossRefGoogle Scholar
  24. Hummel J, Clauss M, Zimmermann W, Johanson K, Norgaard C, Pfeffer E (2005) Fluid and particle retention in captive okapi (Okapia johnstoni). Comp Biochem Physiol A 140:436–444CrossRefGoogle Scholar
  25. Hummel J, Südekum K-H, Streich WJ, Clauss M (2006) Forage fermentation patterns and their implications for herbivore ingesta retention times. Funct Ecol 20:989–1002CrossRefGoogle Scholar
  26. Hummel J, Scheurich F, Ortmann S, Crompton LA, Gerken M, Clauss M (2018) Comparative selective retention of particle size classes in the gastrointestinal tract of ponies and goats. J Anim Physiol Anim Nutr 102:429–439CrossRefGoogle Scholar
  27. Jiang Z, Takatsuki S (1999) Constraints on feeding type in ruminants: a case for morphology over phylogeny. Mammal Study 24:79–89CrossRefGoogle Scholar
  28. Lechner I, Barboza P, Collins W, Fritz J, Günther D, Hattendorf B, Hummel J, Südekum K-H, Clauss M (2010) Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp Biochem Physiol A 155:211–222CrossRefGoogle Scholar
  29. Lechner-Doll M, Rutagwenda T, Schwartz HJ, Schultka W, von Engelhardt W (1990) Seasonal changes of ingesta mean retention time and forestomach fluid volume in indigenous camels, cattle, sheep and goats grazing in a thornbush savanna pasture in Kenya. J Agric Sci 115:409–420CrossRefGoogle Scholar
  30. Mambrini M, Peyraud JL (1997) Retention time of feed particles and liquids in the stomachs and intestines of dairy cows. Direct measurement and calculation based on fecal collection. Reprod Nutr Dev 37:427–442CrossRefGoogle Scholar
  31. Nowak RM, Paradiso JL (1999) Walker's Mammals of the world, 6th edn. The Johns Hopkins University Press, Baltimore and LondonGoogle Scholar
  32. Pérez W, Erdogan S, Ungerfeld R (2015) Anatomical study of the gastrointestinal tract in free-living Axis deer (Axis axis). Anat Histol Embryol 44:43–49CrossRefGoogle Scholar
  33. Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc R Soc B 271:1081–1090CrossRefGoogle Scholar
  34. Renecker LA, Hudson RJ (1990) Digestive kinetics of moose (Alces alces) , wapiti (Cervus elaphus) and cattle. Br Soc Anim Prod 50:51–61Google Scholar
  35. Schwarm A, Ortmann S, Wolf C, Clauss M (2009) No distinct difference in the excretion of large particles of varying size in a wild ruminant, the banteng (Bos javanicus). Eur J Wildl Res 55:531–533CrossRefGoogle Scholar
  36. Tahas SA, Martin Jurado O, Hammer S, Arif A, Reese S, Hatt J-M, Clauss M (2017) Gross measurements of the digestive tract and visceral organs of addax antelope (Addax nasomaculatus) following a concentrate or forage feeding regime. Anat Histol Embryol 46:282–293CrossRefGoogle Scholar
  37. Thielemans MF, François E, Bodart C, Thewis A (1978) Mesure du transit gastrointestinal chez le porc a l'aide des radiolanthanides. Comparaison avec le mouton. Ann Biol Anim Biochim Biophys 18:237–247CrossRefGoogle Scholar
  38. Udén P, Colucci PE, Van Soest PJ (1980) Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J Sci Food Agric 31:625–632CrossRefGoogle Scholar
  39. Van Wieren SE (1996) Browser and grazers: foraging strategies in ruminants. In: Van Wieren SE (ed) Digestive strategies in ruminants and nonruminants. Thesis Landbouw. University of Wageningen, Wageningen, pp 119–146Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nutrition, Genetics and Ethology, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  2. 2.Department of Pathology, Bacteriology and Avian diseases, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  3. 3.Leibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany
  4. 4.Zoological Garden WuppertalWuppertalGermany
  5. 5.Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland

Personalised recommendations