Advertisement

Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems

  • Ana Eugenia SantamaríaEmail author
  • Pedro P. Olea
  • Javier Viñuela
  • Jesús T. García
Original Article
  • 53 Downloads

Abstract

Understanding how species respond to disturbance in human-modified ecosytems is critical for management and conservation of biodiversity in the Anthropocene. In agroecosystems, human disturbances severely modify the habitat of species, particularly for those that live in burrows. The common vole Microtus arvalis (Pallas, 1778) is a semi-fossorial microtine, which often exhibits large abundance fluctuations, becoming an agricultural pest in peak years. We evaluated how both agrarian disturbances (via types of crop and their management) and landscape heterogeneity influenced the abundance of common vole burrow systems along a yearly cycle, at the field and landscape scales. We seasonally recorded the number of burrows and their recent occupation in circular plots of 200-m radius including different types of crops in intensified agrarian landscapes in NW Spain. Our results showed a marked seasonal and spatial pattern in both total abundance and abundance of occupied burrows. After a population peak year, only 31% of burrows were occupied across the year (from 41% in spring–summer to 12% in autumn). The crop type and its management in relation to soil disturbance were the main factors driving seasonal and spatial dynamics of burrow abundance at the field and landscape scale. Alfalfa fields held the highest abundance of both total and occupied burrow systems across the year, while fields of traditional-tilled cereal retained the lowest. As a result, at the landscape scale, plots with a greater surface devoted to traditional cereal crops maintained a lower relative number of burrow systems. Regarding the landscape structural heterogeneity, plots with longer length of field margins and lower area of watercourses maintained higher abundance of burrow systems. An adequate landscape-scale planning of crop types, agricultural practices, and distribution of non-crop habitats could be a promising sustainable method to reduce the risk of crop-damaging vole plagues.

Keywords

Agricultural pest Microtus arvalis Multi-scale approach Small mammal Soil perturbation 

Notes

Acknowledgments

We are very grateful to Luis M. Carrascal and Javier Seoane for statistical advice and workers of GREFA and students of Universidad Autónoma de Madrid for help during censuses. Special thanks to Iván García Egea, Silvia Herrero Cófreces, Alfonso Paz Luna, Daniel Jareño Gómez, Ana Benítez López, María Calero Riestra, and Jorge Piñeiro Álvarez for their help during fieldwork. We would like to also thank the numerous landowners who allowed us access to their property.

Funding

This study was funded by I+D National Plan Projects of the Spanish Ministry of Economy, Industry and Competitiveness (CGL2011-30274 and CGL2015-71255-P), and the Fundación BBVA Research Project TOPIGEPLA (2014 call).

Supplementary material

10344_2019_1286_MOESM1_ESM.docx (39.8 mb)
ESM 1 (DOCX 40751 kb)
10344_2019_1286_MOESM2_ESM.kml (35 kb)
ESM 2 (KML 34 kb)
10344_2019_1286_MOESM3_ESM.docx (25 kb)
ESM 3 (DOCX 24 kb)

References

  1. Bates D, Maechler M, Bolker BM, Walker S (2015a) lme4: linear mixed-effects models using “Eigen” and S4. R package version 1.1-10Google Scholar
  2. Bates D, Maechler M, Bolker BM, Walker S (2015b) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  3. Bohdal T, Navrátil J, Sedláček F (2016) Small terrestrial mammals living along streams acting as natural landscape barriers. Ekológia Bratisl 35:191–204.  https://doi.org/10.1515/eko-2016-0015 CrossRefGoogle Scholar
  4. Bonnet T, Crespin L, Pinot A, Bruneteau L, Bretagnolle V, Gauffre B (2013) How the common vole copes with modern farming: insights from a capture–mark–recapture experiment. Agric Ecosyst Environ 177:21–27.  https://doi.org/10.1016/j.agee.2013.05.005 CrossRefGoogle Scholar
  5. Bowman J, Forbes GJ, Dilworth TG (2001) The spatial component of variation in small-mammal abundance measured at three scales. Can J Zool 79:137–144.  https://doi.org/10.1139/cjz-79-1-137 CrossRefGoogle Scholar
  6. Bradbury RB, Payne RJH, Wilson JD, Krebs JR (2001) Predicting population responses to resource management. Trends Ecol Evol 16:440–445.  https://doi.org/10.1016/S0169-5347(01)02189-9 CrossRefGoogle Scholar
  7. Briner T, Nentwig W, Airoldi J-P (2005) Habitat quality of wildflower strips for common voles (Microtus arvalis) and its relevance for agriculture. Agric Ecosyst Environ 105:173–179.  https://doi.org/10.1016/j.agee.2004.04.007 CrossRefGoogle Scholar
  8. Bring J (1994) How to standardize regression coefficients. Am Stat 48:209–213.  https://doi.org/10.2307/2684719 CrossRefGoogle Scholar
  9. Brown PR, Huth NI, Banks PB, Singleton GR (2007) Relationship between abundance of rodents and damage to agricultural crops. Agric Ecosyst Environ 120:405–415.  https://doi.org/10.1016/j.agee.2006.10.016 CrossRefGoogle Scholar
  10. Brügger A, Nentwig W, Airoldi J-P (2010) The burrow system of the common vole (M. arvalis, Rodentia) in Switzerland. Mammalia 74.  https://doi.org/10.1515/mamm.2010.035
  11. Cavia R, Villafañe IEG, Cittadino EA, Bilenca DN, Miño MH, Busch M (2005) Effects of cereal harvest on abundance and spatial distribution of the rodent Akodon azarae in central Argentina. Agric Ecosyst Environ 107:95–99.  https://doi.org/10.1016/j.agee.2004.09.011 CrossRefGoogle Scholar
  12. Crawley MJ (2007) The R book. John Wiley ans Sons, Chichester. UKCrossRefGoogle Scholar
  13. de Redon L, Machon N, Kerbiriou C, Jiguet F (2010) Possible effects of roadside verges on vole outbreaks in an intensive agrarian landscape. Mamm Biol - Z Für Säugetierkd 75:92–94.  https://doi.org/10.1016/j.mambio.2009.02.001 CrossRefGoogle Scholar
  14. Delattre P, Giraudoux P, Baudry J, Musard P, Toussaint M, Truchetet D, Stahl P, Poule ML, Artois M, Damange JP, Quéré JP (1992) Land use patterns and types of common vole (Microtus arvalis) population kinetics. Agric Ecosyst Environ 39:153–168.  https://doi.org/10.1016/0167-8809(92)90051-C CrossRefGoogle Scholar
  15. Delattre P, Giraudoux P, Baudry J, Quéré JP, Fichet E (1996) Effect of landscape structure on common vole (Microtus arvalis) distribution and abundance at several space scales. Landsc Ecol 11:279–288.  https://doi.org/10.1007/BF02059855 CrossRefGoogle Scholar
  16. Delattre P, Giraudoux P, Damange J-P, Quere J-P (1990) Recherche d’un indicateur de la cinétique démographique des populations du campagnol des champs (Microtus arvalis). Rev D'ecologie 45:375–384Google Scholar
  17. Delattre P, Morellet N, Codreanu P, Miot S, Quéré JP, Sennedot F, Baudry J (2009) Influence of edge effects on common vole population abundance in an agricultural landscape of eastern France. Acta Theriol (Warsz) 54:51–60.  https://doi.org/10.1007/BF03193137 CrossRefGoogle Scholar
  18. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B Biol Sci 268:25–29.  https://doi.org/10.1098/rspb.2000.1325 CrossRefGoogle Scholar
  19. Eggert J, Wolff C, Richter K (2011) Searching for alternative methods for a sustainable population management of the common vole (Microtus arvalis). In: Julius-Kühn-Archiv. Book of abstracts, 8th European Vertebrate Pest Management Conference, Berlin, p 154-155Google Scholar
  20. Epstein PR (1995) Emerging diseases and ecosystem instability: new threats to public health. Am J Public Health 85:168–172CrossRefGoogle Scholar
  21. Fargallo JA, Martínez-Padilla J, Viñuela J, Blanco G, Torre I, Vergara P, de Neve L (2009) Kestrel-prey dynamic in a Mediterranean region: the effect of generalist predation and climatic factors. PLoS One 4:e4311.  https://doi.org/10.1371/journal.pone.0004311 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fischer C, Schröder B (2014) Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agric Ecosyst Environ 189:145–153.  https://doi.org/10.1016/j.agee.2014.03.039 CrossRefGoogle Scholar
  23. Fischer C, Thies C, Tscharntke T (2011) Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol Conserv 144:1130–1136.  https://doi.org/10.1016/j.biocon.2010.12.032 CrossRefGoogle Scholar
  24. Fox J, Weisberg S (2011) An {R} Companion to applied regression, Second Edition. Sage, Thousand Oaks (CA)Google Scholar
  25. Gaines MS, Vivas AM, Baker CL (1979) An experimental analysis of dispersal in fluctuating vole populations: demographic parameters. Ecology 60:814–828.  https://doi.org/10.2307/1936617 CrossRefGoogle Scholar
  26. Gratz NG (2018) Rodents and human disease: a global appreciation. In: Rodent pest management. CRC Press, Boca Raton, pp 111–180Google Scholar
  27. Heroldová M, Michalko R, Suchomel J, Zejda J (2018) Influence of no-tillage versus tillage system on common vole (Microtus arvalis) population density. Pest Manag Sci n/a-n/a 74:1346–1350.  https://doi.org/10.1002/ps.4809 CrossRefPubMedGoogle Scholar
  28. Heroldová M, Tkadlec E, Bryja J, Zejda J (2008) Wheat or barley?: Feeding preferences affect distribution of three rodent species in agricultural landscape. Appl Anim Behav Sci 110:354–362.  https://doi.org/10.1016/j.applanim.2007.05.008 CrossRefGoogle Scholar
  29. Heroldová M, Zejda J, Zapletal M et al (2004) Importance of winter rape for small rodents. Plant Soil Environ 50:175–181CrossRefGoogle Scholar
  30. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363.  https://doi.org/10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  31. Hygnstrom SE, VerCauteren KC, Hines RA, Mansfield CW (2000) Efficacy of in-furrow zinc phosphide pellets for controlling rodent damage in no-till corn. Int Biodeterior Biodegrad 45:215–222CrossRefGoogle Scholar
  32. Hyndman R, Bergmeir C, Caceres G, et al (2018) Forecast: forecasting functions for time series and linear models. R package version 8.3. http://pkg.robjhyndman.com/forecast
  33. Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27.  https://doi.org/10.18637/jss.v027.i03
  34. Jacob J (2003) Short-term effects of farming practices on populations of common voles. Agric Ecosyst Environ 95:321–325.  https://doi.org/10.1016/S0167-8809(02)00084-1 CrossRefGoogle Scholar
  35. Jacob J, Brown JS (2000) Microhabitat use, giving-up densities and temporal activity as short- and long-term anti-predator behaviors in common voles. Oikos 91:131–138.  https://doi.org/10.1034/j.1600-0706.2000.910112.x CrossRefGoogle Scholar
  36. Jacob J, Hempel N (2003) Effects of farming practices on spatial behaviour of common voles. J Ethol 21:45–50 Google Scholar
  37. Jacob J, Manson P, Barfknecht R, Fredricks T (2014) Common vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products: common voles in the risk assessment of plant protection products. Pest Manag Sci 70:869–878.  https://doi.org/10.1002/ps.3695 CrossRefPubMedGoogle Scholar
  38. Jacob J, Tkadlec E (2010) Rodent outbreaks in Europe: dynamics and damage. In: Singleton GR, Belmain S, Brown PR (eds) Rodent outbreaks: ecology and impacts. International Rice Research Institute, Los Baños, Philippines, pp 207–223Google Scholar
  39. Jánová E, Heroldová M (2016) Response of small mammals to variable agricultural landscapes in Central Europe. Mamm Biol - Z Für Säugetierkd 81:488–493.  https://doi.org/10.1016/j.mambio.2016.06.004 CrossRefGoogle Scholar
  40. Jánová E, Heroldová M, Bryja J (2008) Conspicuous demographic and individual changes in a population of the common vole in a set-aside alfalfa field. Ann Zool Fenn 45:39–54.  https://doi.org/10.5735/086.045.0104 CrossRefGoogle Scholar
  41. Jánová E, Heroldová M, Konecny A, Bryja J (2011) Traditional and diversified crops in South Moravia (Czech Republic): habitat preferences of common vole and mice species. Mamm Biol - Z Für Säugetierkd 76:570–576.  https://doi.org/10.1016/j.mambio.2011.04.003 CrossRefGoogle Scholar
  42. Jánová E, Heroldová M, Nesvadbová J, Bryja J, Tkadlec E (2003) Age variation in a fluctuating population of the common vole. Oecologia 137:527–532.  https://doi.org/10.1007/s00442-003-1379-0 CrossRefPubMedGoogle Scholar
  43. Jareño D, Viñuela J, Luque-Larena JJ, Arroyo L, Arroyo B, Mougeot F (2014) A comparison of methods for estimating common vole (Microtus arvalis) abundance in agricultural habitats. Ecol Indic 36:111–119.  https://doi.org/10.1016/j.ecolind.2013.07.019 CrossRefGoogle Scholar
  44. Jareño D, Viñuela J, Luque-Larena JJ, Arroyo L, Arroyo B, Mougeot F (2015) Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol Invasions 17:2315–2327.  https://doi.org/10.1007/s10530-015-0877-4 CrossRefGoogle Scholar
  45. Kinlaw A (1999) A review of burrowing by semi-fossorial vertebrates in arid environments. J Arid Environ 41:127–145.  https://doi.org/10.1006/jare.1998.0476 CrossRefGoogle Scholar
  46. Krebs CJ (2013) Population fluctuations in rodents. In: University of Chicago Press. Chicago, USAGoogle Scholar
  47. Lantová P, Lanta V (2009) Food selection in Microtus arvalis: the role of plant functional traits. Ecol Res 24:831–838.  https://doi.org/10.1007/s11284-008-0556-3 CrossRefGoogle Scholar
  48. Laundré JW, Reynolds TD (1993) Efects of soil structure on burrow characteristic of five small mammal species. Gt Basin Nat 4:358–366Google Scholar
  49. Leu ST, Kappeler PM, Bull CM (2010) Refuge sharing network predicts ectoparasite load in a lizard. Behav Ecol Sociobiol 64:1495–1503.  https://doi.org/10.1007/s00265-010-0964-6 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liro A (1974) Renewal of burrows by the common vole as the indicator of its numbers. Acta Theriol (Warsz) 19:259–272CrossRefGoogle Scholar
  51. Luque-Larena JJ, Mougeot F, Arroyo B, Vidal MD, Rodríguez-Pastor R, Escudero R, Anda P, Lambin X (2017) Irruptive mammal host populations shape tularemia epidemiology. PLoS Pathog 13:e1006622.  https://doi.org/10.1371/journal.ppat.1006622 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Luque-Larena JJ, Mougeot F, Roig DV, Lambin X, Rodríguez-Pastor R, Rodríguez-Valín E, Anda P, Escudero R (2015) Tularemia outbreaks and common vole (Microtus arvalis) irruptive population dynamics in northwestern Spain, 1997–2014. Vector-Borne Zoonotic Dis 15:568–570.  https://doi.org/10.1089/vbz.2015.1770 CrossRefPubMedGoogle Scholar
  53. Mackin-Rogalska R (1979) Elements of the spatial organization of a common vole population. Acta Theriol (Warsz) 24:171–199CrossRefGoogle Scholar
  54. Mackin-Rogalska R, Adamczewska-Andrzejwsika K, Nabaglo L (1986) Common vole numbers in relation to the utilization of burrow systems. Acta Theriol (Warsz) 31:17–44CrossRefGoogle Scholar
  55. Madejón E, Murillo JM, Moreno F, López MV, Arrue JL, Alvaro-Fuentes J, Cantero C (2009) Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res 105:55–62.  https://doi.org/10.1016/j.still.2009.05.007 CrossRefGoogle Scholar
  56. MAGRAMA (2012) Encuesta sobre Superficies y Rendimientos de Cultivos 2012. Ministerio de Agricultura, Alimentación y Medio Ambiente. Secretaría General Técnica. Centro de PublicacionesGoogle Scholar
  57. MAGRAMA (2015) Encuesta sobre Superficies y Rendimientos de Cultivos 2015. Ministerio de Agricultura, Alimentación y Medio Ambiente. Secretaría General Técnica. Centro de PublicacionesGoogle Scholar
  58. Marques SF, Rocha RG, Mendes ES, Fonseca C, Ferreira JP (2015) Influence of landscape heterogeneity and meteorological features on small mammal abundance and richness in a coastal wetland system, NW Portugal. Eur J Wildl Res 61:749–761.  https://doi.org/10.1007/s10344-015-0952-2 CrossRefGoogle Scholar
  59. McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55:201–212.  https://doi.org/10.1016/0167-8809(95)00609-V CrossRefGoogle Scholar
  60. Millán de la Peña NM, Butet A, Delettre Y et al (2003) Response of the small mammal community to changes in western French agricultural landscapes. Landsc Ecol 18:265–278CrossRefGoogle Scholar
  61. Moreno S, Kufner MB (1988) Seasonal patterns in the wood mouse population in Mediterranean scrubland. Acta Theriol (Warsz) 33:79–85CrossRefGoogle Scholar
  62. Nowak RM (ed) (1999) Walker’s mammals of the world, 6th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  63. Oñate JJ, Suárez F, Peco B et al (2003) Programa Piloto de Acciones de Conservación de la Biodiversidad en Sistemas Ambientales con Usos Agrarios en el Marco del Desarrollo Rural. Informe Final. Direccion General de Conservación de la Naturaleza. Secretaría General de Medio Ambiente. Ministerio de Medio Ambiente, MadridGoogle Scholar
  64. Paz A, Jareño D, Arroyo L, Viñuela J, Arroyo B, Mougeot F, Luque-Larena JJ, Fargallo JA (2013) Avian predators as a biological control system of common vole (Microtus arvalis) populations in north-western Spain: experimental set-up and preliminary results. Pest Manag Sci 69:444–450.  https://doi.org/10.1002/ps.3289 CrossRefPubMedGoogle Scholar
  65. Pinot A, Gauffre B, Bretagnolle V (2014) The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore. BMC Ecol 14:17.  https://doi.org/10.1186/1472-6785-14-17 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Quantum GIS Development Team (2015) Qgis. Quantum GIS development teamGoogle Scholar
  67. Reichman OJ, Smith SC (1990) Burrows and burrowings behavior in mammals. In: Current Mammalogy. Plenum Press, New York and LondonGoogle Scholar
  68. Revelle W (2016) Package “psych” version 1.6.6. Psych: procedures for psychological, psychometric, and personality research. https://cran.r-project.org/web/packages/psych/index.html
  69. Rodríguez-Pastor R, Luque-Larena JJ, Lambin X, Mougeot F (2016) “Living on the edge”: the role of field margins for common vole (Microtus arvalis) populations in recently colonised Mediterranean farmland. Agric Ecosyst Environ 231:206–217.  https://doi.org/10.1016/j.agee.2016.06.041 CrossRefGoogle Scholar
  70. Roos D, Caminero Saldaña C, Arroyo B, Mougeot F, Luque-Larena JJ, Lambin X (2019) Unintentional effects of environmentally-friendly farming practices: arising conflicts between zero-tillage and a crop pest, the common vole (Microtus arvalis). Agric Ecosyst Environ 272:105–113.  https://doi.org/10.1016/j.agee.2018.11.013 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rosário IT, Mathias ML (2004) Annual weight variation and reproductive cycle of the wood mouse (Apodemus sylvaticus) in a Mediterranean environment. Mammalia 68:133–140CrossRefGoogle Scholar
  72. R Development Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  73. Shannon CE (1948) A mathematical theory of communication. Part I, Part II Bell Syst Tech J 27:623–656CrossRefGoogle Scholar
  74. Singleton GR, Belmain S, Brown PR, Hardy B (eds) (2010) Rodent outbreaks: ecology and impacts. International Rice Research Institute, Los Baños, PhilippinesGoogle Scholar
  75. Sokolova NA, Sokolov AA, Ims RA, Skogstad G, Lecomte N, Sokolov VA, Yoccoz NG, Ehrich D (2014) Small rodents in the shrub tundra of Yamal (Russia): density dependence in habitat use? Mamm Biol - Z Für Säugetierkd 79:306–312.  https://doi.org/10.1016/j.mambio.2014.04.004 CrossRefGoogle Scholar
  76. Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391CrossRefGoogle Scholar
  77. Sterner RT, Petersen BE, Gaddis SE, Tope KL, Poss DJ (2003) Impacts of small mammals and birds on low-tillage, dryland crops. Crop Prot 22:595–602.  https://doi.org/10.1016/S0261-2194(02)00236-3 CrossRefGoogle Scholar
  78. Terraube J, Arroyo B, Madders M, Mougeot F (2011) Diet specialisation and foraging efficiency under fluctuating vole abundance: a comparison between generalist and specialist avian predators. Oikos 120:234–244.  https://doi.org/10.1111/j.1600-0706.2010.18554.x CrossRefGoogle Scholar
  79. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci 96:5995–6000.  https://doi.org/10.1073/pnas.96.11.5995 CrossRefPubMedGoogle Scholar
  80. Turner MG (2010) Disturbance and landscape dynamics in a changing world1. Ecology 91:2833–2849.  https://doi.org/10.1890/10-0097.1 CrossRefPubMedGoogle Scholar
  81. Vidal D, Alzaga V, Luque-Larena JJ, Mateo R, Arroyo L, Viñuela J (2009) Possible interaction between a rodenticide treatment and a pathogen in common vole (Microtus arvalis) during a population peak. Sci Total Environ 408:267–271.  https://doi.org/10.1016/j.scitotenv.2009.10.001 CrossRefPubMedGoogle Scholar
  82. White PS, Pickett STA (1985) Chapter 1 - natural disturbance and patch dynamics: an introduction. In: The ecology of natural disturbance and patch dynamics. Academic Press, San Diego, pp 3–13Google Scholar
  83. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar
  84. Witmer G, Sayler R, Huggins D, Capelli J (2007) Ecology and management of rodents in no-till agriculture in Washington, USA. Integr Zool 2:154–164.  https://doi.org/10.1111/j.1749-4877.2007.00058.x CrossRefPubMedGoogle Scholar
  85. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigación en Recursos CinegéticosIREC (CSIC-UCLM-JCCM)Ciudad RealSpain
  2. 2.Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  3. 3.Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM)Universidad Autónoma de MadridMadridSpain

Personalised recommendations