Advertisement

Agriculture in semiarid ecosystems favors the increase fossorial rodent’s activity in La Pampa, Argentina

  • Ana Paula Álamo IriarteEmail author
  • Paolo Daniel Sartor
  • Jaime Nicolás Bernardos
Original Article
  • 40 Downloads

Abstract

Technological advancements and new production systems modify the conditions of natural environments. Transformations in an arid landscape caused by alfalfa cropping under pressurized irrigation systems have generated a conflict between farmers and Azara’s tuco-tucos (Ctenomys azarae). Mounds produced by this species damage the alfalfa cutting equipment, reduce the lifespan of harvesting machinery, and results in high production costs. The goal of this study was to determine the production variables that influence density and spatial distribution pattern of Azara’s tuco-tucos’ mounds within the alfalfa plots under center-pivot irrigation. We assessed the frequency and distribution of Azara’s tuco-tuco mounds in plots under center-pivot irrigation during two alfalfa crop seasons. Using generalized linear models, we determined that the total number of mounds and the number of active mounds were positively related to alfalfa’s stand age and height. However, there are likely other variables that we did not include that should be considered to reduce the number of mounds and, therefore, mitigate damage. Considering the emerging implementation of new agricultural practices and the distribution area of the genus Ctenomys, this unprecedented work in Latin America contributes necessary and important information for better pest control management.

Keywords

Agriculture Ctenomys Damage Pest Pressurized irrigation 

Notes

Acknowledgments

We are especially grateful to the Cámara de Productores Bajo Riego de Cnia. 25 de Mayo, Zille Agro S.A., and the staff of AER (INTA) Colonia 25 de Mayo.We thank Dane St. George, Jeffrey Thompson, Alberto Sosa, Jorgelina Brasca, Federico Frank, and Francisco Etchart for making this work possible by providing writing assistance. We especially want to thank the anonymous reviewers for their insightful and pragmatic contributions.

Funding information

This work was financially supported by the US Fish and Wildlife Service through the Maestría en Manejo de Vida Silvestre (UNC) and by the Instituto Nacional de Tecnología Agropecuaria (PRET PAMSL-1282103; PNNAT 1128053).

References

  1. Álamo Iriarte AP (2016) Propuesta de manejo para la reducción del daño generado por tuco-tuco (Ctenomys sp) en la producción de pasturas bajo riego presurizado en sistemas semiáridos. Tesis de Maestría en Manejo de Vida Silvestre, Universidad Nacional de CórdobaGoogle Scholar
  2. Albanese S, Rodríguez D, Dacar MA, Ojeda RA (2010) Use of resources by the subterranean rodent Ctenomys mendocinus (Rodentia, Ctenomyidae), in the lowland Monte desert, SArgentina. J Arid Environ 74:458–463.  https://doi.org/10.1016/j.jaridenv.2009.10.011 CrossRefGoogle Scholar
  3. Andelt W, Case R (2014) Managing pocket gopher. Nat Resour Ser Wildl Ext Colo State Univ Fact Sheet 6.515Google Scholar
  4. Andrade A, Udrizar Sauthier DE, Pardiñas UF (2004) Vertebrados depredados por la lechucita vizcachera (Athene cunicularia) en la meseta de Somuncurá (Río Negro, Argentina). El Hornero 19:91–93Google Scholar
  5. Baldo MB, Luna F, Antenucci CD (2016) Does acclimation to contrasting atmospheric humidities affect evaporative water loss in the South American subterranean rodent Ctenomys talarum? J Mammal 97:1312–1320.  https://doi.org/10.1093/jmammal/gyw104 CrossRefGoogle Scholar
  6. Baldwin RA (2014) Determining and demonstrating the importance of training and experience for managing pocket gophers. Wildl Soc Bull 38:628–633.  https://doi.org/10.1002/wsb.439 CrossRefGoogle Scholar
  7. Basigalup DH (2014) Situación de la alfalfa en Argentina. In: Recopilación de Presentaciones Técnicas. INTA Manfredi, p 262Google Scholar
  8. Basigalup DH, Rossanigo R (2007) Panorama actual de la alfalfa en Argentina. In: El cultivo de alfalfa en Argentina. Ediciones INTA., Buenos Aires, p 479Google Scholar
  9. Bellocq MI (1987) Selección de hábitat de caza y depredación diferencial de Athene cunicularia sobre roedores en ecosistemas agrarios. Rev Chil Hist Nat 60:81–86Google Scholar
  10. Bobadilla SE, Lexow G, Dellacanonica C (2008) Manual de alfalfa. Conceptos básicos sobre implantación, cuidados y manejo del cultivo en el Noroeste de la Provincia de Chubut. INTA Ediciones, EsquelGoogle Scholar
  11. Boqué G (2006) Bioperturbación del suelo por pequeños roedores excavadores del género Ctenomys, tuco tucos, en una estepa arbustiva del noreste Patagónico. Universidad Nacional de la Patagonia San Juan BoscoGoogle Scholar
  12. Brown PR, Tuan NP, Singleton GR, Ha PTT, Hoa PT, Hue DT, Tan TQ, Tuat NV, Jacob J, Müller WJ (2006) Ecologically based management of rodents in the real world: applied to a mixed agroecosystem in Vietnam. Ecol Appl 16:2000–2010CrossRefGoogle Scholar
  13. Bruggers RL, Zaccagnini ME (1994) Vertebrate pest problems related to agricultural production and applied research in Argentina. Vida Silv Neotropical 3:71–83Google Scholar
  14. Burnham K, Anderson D (2002) Selection and multimodel inference: a practical information-theoretic approach, second edition. Springer-Verlag, New YorkGoogle Scholar
  15. Busch C, Antinuchi CD, Del Valle C, Kittlein MJ, Malizia AI, Vasallo AI, Zenuto RR (2000) Population ecology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 183–226Google Scholar
  16. Busch C, Malizia AI, Scaglia OA, Reig OA (1989) Spatial distribution and attributes of a population of Ctenomys talarum (Rodentia: Octodontidae). J Mammal 70:204–208CrossRefGoogle Scholar
  17. Canavelli SB, Zaccagnini ME (2007) Nuevos enfoques en el manejo de conflictos con fauna silvestre para una agricultura sustentable. In: Caviglia OP, Paparotti OF, Sasal MC (eds) Agricultura Sustentable en Entre Ríos. Ediciones INTA, Buenos Aires, p 32Google Scholar
  18. Cano E, Fernández B, Montés M (1980) Inventario integrado de los recursos naturales de la Provincia de La Pampa. Clima, Geomorfología, Suelo y Vegetación. Buenos AiresGoogle Scholar
  19. Case RM, Jasch BA (1994) Pocket gophers. Handb. Prev. Control Wildl. Wildl. Damage Manag. Univ. Neb. LincGoogle Scholar
  20. Contreras JR (1973) El tucu-tuco y sus relaciones con los problemas del suelo en la Argentina. IDIA-Inf Investig Agric Argent 29:14–36Google Scholar
  21. Contreras JR, Maceiras AJ (1970) Relaciones entre tucu-tucos y los procesos del suelo en la región semiárida del sudoeste bonaerense. Agro 17:1–17Google Scholar
  22. Dentzien-Dias PC, Figueiredo AEQ (2015) Burrow architecture and burrowing dynamics of Ctenomys in foredunes and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 439:166–175CrossRefGoogle Scholar
  23. Gebhardt K, Anderson AM, Kirkpatrick KN, Shwiff SA (2011) A review and synthesis of bird and rodent damage estimates to select California crops. Crop Prot 30:1109–1116CrossRefGoogle Scholar
  24. Haim A, Shanas U, Brandes O, Gilboa A (2007) Suggesting the use of integrated methods for vole population management in alfalfa fields. Integr Zool 2:184–190CrossRefGoogle Scholar
  25. Jareño D, Viñuela J (2016) Reliability of methods used to estimate rodent pest densities in agricultural systems: the case of common vole (Microtus arvalis) in NW Spain. Galemys 28:15–22.  https://doi.org/10.7325/Galemys.2016.A2 CrossRefGoogle Scholar
  26. Kittlein MJ, Vassallo AI, Busch C (2001) Differential predation upon sex and age classes of tuco-tucos (Ctenomys talarum, Rodentia: Octodontidae) by owls. Mamm Biol 66:281–289Google Scholar
  27. Ludwing JA, Reynolds JF (1988) Chapter 4: quadrat- variance methods. In: Statistical ecology. John Wiley & Sons, New York, USAGoogle Scholar
  28. Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84:661–667CrossRefGoogle Scholar
  29. Malizia AI, Vassallo AI, Busch C (1991) Population and habitat characteristics of two sympatric species of Ctenomys (Rodentia: Octodontidae). Acta Theriol (Warsz) 36:87–94CrossRefGoogle Scholar
  30. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  31. Messmer TA (2000) The emergence of human–wildlife conflict management: turning challenges into opportunities. Int Biodeterior Biodegrad 45:97–102CrossRefGoogle Scholar
  32. Morello J, Matteucci SD, Rodriguez AF, Silva ME (2012) Ecorregiones y complejos ecosistémicos de Argentina. FADU-GEPAMA, Buenos AiresGoogle Scholar
  33. Navarro JL, Rosati VR, Fraire EC (1997) Incidencia de vizcachas (Lagostomus maximus) en un cultivo de soja. Mastozoologia Neotropical 4:137–144Google Scholar
  34. Odorizzi A, Arolfo V, Basigalup DH (2011) Evaluación de daño de gorgojos en poblaciones de alfalfa (Medicago sativa L.) con alto número de raíces laterales. Agroscientia 23:119–126Google Scholar
  35. Puig S, Rosi MI, Videla F, Roig VG (1992) Estudio ecológico del roedor subterráneo Ctenomys mendocinus en la precordillera de Mendoza, Argentina: densidad poblacional y uso del espacio. Rev Chil Hist Nat 65:247–254Google Scholar
  36. R Core Team (2017) R: A Language and Environment for Statistical ComputingGoogle Scholar
  37. Reichman OJ, Seabloom EW (2002) The role of pocket gophers as subterranean ecosystem engineers. Trends Ecol Evol 17:44–49.  https://doi.org/10.1016/S0169-5347(01)02329-1 CrossRefGoogle Scholar
  38. Romero N, Comeron E, Ustarroz E, Hijano E, Navarro A (1995) Manejo y utilización de la alfalfa. In: La alfalfa en la Argentina. INTA, Cuyo, Mendoza, pp 151–169Google Scholar
  39. Rosi MI, Cona MI, Roig VG (2002) Estado actual del conocimiento del roedor fosorial Ctenomys mendocinus, Philippi 1869 (Rodentia: Ctenomyidae). Mastozool Neotropical 9:277–295Google Scholar
  40. Rosi MI, Cona MI, Videla F, Puig S, Roig VG (2000) Architecture of Ctenomys mendocinus (Rodentia) burrows from two habitats differing in abundance and complexity of vegetation. Acta Theriol (Warsz) 45:491–505CrossRefGoogle Scholar
  41. Salmon T, Gorenzel W (2010) Ground squirrel. Integrated pest management for home gardeners and landscape professionals. Univ. Calif. Statew. Integr. Pest Manag. Program Agric. Nat. Resour. Pest Notes Publ. 7438Google Scholar
  42. Sarasola JH, Santillan MA, Galmes M (2003) Food habits and foraging ecology of American kestrels in the semiarid forests of central Argentina. J Raptor Res 37:236–243Google Scholar
  43. Singleton GR (1999) Ecologically-based management of rodents ACIAR Monograph No 59Google Scholar
  44. Singleton GR (2003) Impacts of rodents on rice production in Asia. IRRI discussion paper seriesGoogle Scholar
  45. Solaro C, Santillán MA, Costán AS, Reyes MM (2012) Ecología trófica de Athene cunicularia y Tyto alba en el cerro Curru-Mahuida, ecotono monte-espinal, La Pampa, Argentina. El Hornero 27:177–182Google Scholar
  46. Stenseth NC, Leirs H, Skonhoft A, Davis SA, Pech RP, Andreassen HP, Singleton GR, Lima M, Machang’u RS, Makundi RH, Zhang Z, Brown PR, Shi D, Wan X (2003) Mice, rats, and people: the bio-economics of agricultural rodent pests. Front Ecol Environ 1:367–375CrossRefGoogle Scholar
  47. Tobin ME, Fall MW (2004) Pest control: rodents. wildlife damage management. Internet Cent USDA Natl Wildl Res Center—Staff Publ Univ Nebraska—Lincoln YearGoogle Scholar
  48. Whisson D, Salmon T (2007) Chapter 12: Integrated management of vertebrate pest in alfalfa. In: Summers CG, Putnam D (eds) Irrigated alfalfa management in mediterranean and desert zones. University of California agriculture and natural resources, OklandGoogle Scholar
  49. Whisson DA, Orloff SB, Lancaster DL (2000) The economics of managing Belding’s ground squirrels in alfalfa in northeastern California. Hum Confl Wildl Econ Consid 104–108Google Scholar
  50. Witmer G, Engeman R (2007) Subterranean rodents as pests: the case of the pocket gopher. In: Begall S, Burda H, Schleich C (eds) Subterranean rodents: news from underground. Springer, pp 287–299Google Scholar
  51. Witmer G, Singleton GR (2010) Sustained agriculture: the need to manage rodent damage. Agric Prod 1:1–38Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ana Paula Álamo Iriarte
    • 1
    • 2
    Email author
  • Paolo Daniel Sartor
    • 3
  • Jaime Nicolás Bernardos
    • 2
    • 4
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.EEA “Ing. Agr. Guillermo Covas”Instituto Nacional de Tecnología Agropecuaria (INTA)AnguilArgentina
  3. 3.AER “Colonia 25 de Mayo”Instituto Nacional de Tecnología Agropecuaria (INTA)Colonia 25 de MayoArgentina
  4. 4.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de La Pampa (UNLPam)Santa RosaArgentina

Personalised recommendations