Advertisement

Extreme temperature event and mass mortality of insectivorous bats

  • Mathieu PruvotEmail author
  • Julien Cappelle
  • Neil Furey
  • Vibol Hul
  • Huy Sreang Heng
  • Veasna Duong
  • Philippe Dussart
  • Paul Horwood
Short Communication

Abstract

A mass mortality event involving Chaerephon plicatus and Taphozous theobaldi bats occurred during a heat wave in April 2016 in Cambodia. This was investigated to clarify the causes of the die-off and assess the risk to public health. Field evidences, clinical signs, and gross pathology findings were consistent with a heat stress hypothesis. However, the detection of a novel bat paramyxovirus raises questions about its role as a contributing factor or a coincidental finding. Systematic documentation of bat die-offs related to extreme weather events is necessary to improve understanding of the effect of changing weather patterns on bat populations and the ecosystem services they provide.

Keywords

Bat paramyxovirus Die-off Extreme weather event Heat stress Outbreak investigation 

Notes

Acknowledgments

We thank the Forestry Administration, the Ministry of Environment, and the Angkor Center for Conservation of Biodiversity for facilitating this investigation.

Funding

This study was funded by the European Union under the INNOVATE program, through the two projects LACANET (DCI-ASIE/2013/315-151) and ComAcross (DCI-ASIE/2013/315-047).

Compliance with ethical standards

All procedures performed in studies involving animals were in accordance with protocol no. 15:04 reviewed and approved by WCS’s Institutional Animal Care and Use Committee. Access to site and authorization to conduct the study was granted by the Ministry of Environment of the Royal Government of Cambodia.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Anthony SJ, Leger JAS, Pugliares K et al (2012) Emergence of fatal avian influenza in New England Harbor seals. mBio 3:e00166–e00112.  https://doi.org/10.1128/mBio.00166-12 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atkins A, Wellehan JFX, Childress AL et al (2009) Characterization of an outbreak of astroviral diarrhea in a group of cheetahs (Acinonyx jubatus). Vet Microbiol 136:160–165.  https://doi.org/10.1016/j.vetmic.2008.10.035 CrossRefPubMedGoogle Scholar
  3. Chu DKW, Poon LLM, Guan Y, Peiris JSM (2008) Novel astroviruses in insectivorous bats. J Virol 82:9107–9114.  https://doi.org/10.1128/JVI.00857-08 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM, Gloza-Rausch F, Seebens A, Müller MA, Drosten C (2011) Amplification of emerging viruses in a bat colony. Emerg Infect Dis J 17:449–456.  https://doi.org/10.3201/eid1703.100526 CrossRefGoogle Scholar
  5. FAO (2012) Wildlife in a changing climate. FAOGoogle Scholar
  6. IPCC (2014) Climate Change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Core Writing Team, R.K. Pachauri, L.A. Meyer (eds). IPCC, Geneva, Switzerland, p 151Google Scholar
  7. Jun MH, Karabatsos N, Johnson RH (1977) A new mouse paramyxovirus (J Virus). Aust J Exp Biol Med Sci 55:645–647.  https://doi.org/10.1038/icb.1977.63 CrossRefPubMedGoogle Scholar
  8. Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats: ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38.  https://doi.org/10.1111/j.1749-6632.2011.06004.x CrossRefPubMedGoogle Scholar
  9. Licht P, Leitner P (1967) Physiological responses to high environmental temperatures in three species of microchiropteran bats. Comp Biochem Physiol 22:371–387.  https://doi.org/10.1016/0010-406X(67)90601-9 CrossRefGoogle Scholar
  10. Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, de Lamballerie X (2007) A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis Larchmt N 7:467–477.  https://doi.org/10.1089/vbz.2007.0206 CrossRefGoogle Scholar
  11. O'Shea TJ, Cryan PM, Cunningham AA et al (2014) Bat flight and zoonotic viruses. Emerg Infect Dis 20(5):741–745.  https://doi.org/10.3201/eid2005.130539 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Peterson R, Sizer N, Potapov P, Thau D (2015) Satellites Uncover 5 Surprising Hotspots for Tree Cover Loss | World Resources Institute. http://www.wri.org/blog/2015/09/satellites-uncover-5-surprising-hotspots-tree-cover-loss. Accessed 17 Jul 2018
  13. Quan P-L, Firth C, Street C et al (2010) Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio 1:e00208–e00210.  https://doi.org/10.1128/mBio.00208-10 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Sánchez-Seco MP, Rosario D, Quiroz E, Guzmán G, Tenorio A (2001) A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus. J Virol Methods 95:153–161CrossRefGoogle Scholar
  15. Thi S, Furey NM, Jurgens JA (2014) Effect of bat guano on the growth of five economically important plant species. J Trop Agric 52:169–173Google Scholar
  16. Tong S, Chern S-WW, Li Y, Pallansch MA, Anderson LJ (2008) Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J Clin Microbiol 46:2652–2658.  https://doi.org/10.1128/JCM.00192-08 CrossRefPubMedPubMedCentralGoogle Scholar
  17. UNESCAP (2015) El Niño 2015/2016: impact outlook and policy implications. https://www.unescap.org/sites/default/files/El%20Nino%20Advisory%20Note%20Dec%202015%20Final.pdf. Accessed 17 Jul 2018
  18. Vázquez-Morón S, Avellón A, Echevarría JE (2006) RT-PCR for detection of all seven genotypes of Lyssavirus genus. J Virol Methods 135:281–287.  https://doi.org/10.1016/j.jviromet.2006.03.008 CrossRefPubMedGoogle Scholar
  19. Wang L-F (2015) Bats and viruses: a new frontier of emerging infectious diseases. John Wiley & SonsGoogle Scholar
  20. Wanger TC, Darras K, Bumrungsri S, Tscharntke T, Klein AM (2014) Bat pest control contributes to food security in Thailand. Biol Conserv 171:220–223.  https://doi.org/10.1016/j.biocon.2014.01.030 CrossRefGoogle Scholar
  21. Watanabe S, Masangkay JS, Nagata N, Morikawa S, Mizutani T, Fukushi S, Alviola P, Omatsu T, Ueda N, Iha K, Taniguchi S, Fujii H, Tsuda S, Endoh M, Kato K, Tohya Y, Kyuwa S, Yoshikawa Y, Akashi H (2010) Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis 16:1217–1223.  https://doi.org/10.3201/eid1608.100208 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B Biol Sci 275:419–425.  https://doi.org/10.1098/rspb.2007.1385 CrossRefGoogle Scholar
  23. Zhai J, Palacios G, Towner JS, Jabado O, Kapoor V, Venter M, Grolla A, Briese T, Paweska J, Swanepoel R, Feldmann H, Nichol ST, Lipkin WI (2007) Rapid molecular strategy for filovirus detection and characterization. J Clin Microbiol 45:224–226.  https://doi.org/10.1128/JCM.01893-06 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wildlife Conservation SocietyFort CollinsUSA
  2. 2.Centre International de Recherche Agronomique pour le Développement (Cirad)MontpellierFrance
  3. 3.Fauna & Flora International Cambodia ProgrammePhnom PenhCambodia
  4. 4.Institut Pasteur du CambodgePhnom PenhCambodia
  5. 5.Australian Institute of Tropical Health and MedicineCairnsAustralia

Personalised recommendations