Advertisement

Assessing the complex relationship between landscape, gene flow, and range expansion of a Mediterranean carnivore

  • Tânia BarrosEmail author
  • João Carvalho
  • Carlos Fonseca
  • Samuel A. Cushman
Original Article

Abstract

Landscape resistance is often disregarded in studies of range expansions and population connectivity. To assess those effects, we simulated the expansion of the Egyptian mongoose (Herpestes ichneumon) in relation to landscape resistance through kernel resistance modeling, confronting it with previously published data regarding the observed pattern of expansion and genetic diversity of the population in Portugal. We modeled population expansion as a function of shrub cover and elevation through iterative simulation of a resistance model and a null model. We then performed an overlap analysis to assess the congruence between the observed pattern of expansion and both resistance and null models across 30 years. We also tested whether there is an effect of allelic surfing or the central-marginal hypothesis by correlating observed allelic richness (1) with the number of simulated years that each location with sampled genotypes had been occupied by the mongoose population and (2) with the cumulative resistant kernel density (which is a measure of population centrality). Results indicated a higher similarity between observed range expansion and the simulation using the null model and a marginally significant correlation between observed allelic richness and number of years of the simulated presence of the species in the null model. The pattern of range expansion in this population is most consistent with a neutral model of uniform resistance, and genetic diversity is most correlated with null model as well. This suggests that range expansion and genetic diversity patterns in expanding populations may not always be predicted by landscape resistance models developed through association of observed genetic differentiation with landscape features.

Keywords

Egyptian mongoose Genetic diversity Landscape resistance Range shifts UNICOR 

Notes

Funding information

The University of Aveiro (Department of Biology) and FCT/MEC provided financial support to CESAM RU (UID/AMB/50017) through national funds and co-financed by the FEDER, within the PT2020 Partnership Agreement. This study was co-supported by European Funds through COMPETE. JC was supported by a PhD grant (SFRH/BD/98387/2013) from Fundação para a Ciência e a Tecnologia (FCT), Portugal.

Supplementary material

10344_2019_1274_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)
10344_2019_1274_MOESM3_ESM.docx (14 kb)
ESM 3 (DOCX 13 kb)

References

  1. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326.  https://doi.org/10.1111/brv.12000 CrossRefPubMedGoogle Scholar
  2. Balkenhol N, Cushman S, Storfer A, Waits L (2015) Landscape genetics: concepts, methods, applications. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  3. Balmori A, Carbonell R (2012) Expansion and distribution of the Egyptian mongoose (Herpestes ichneumon) in the Iberian Peninsula. Galemys, Spanish J Mammal 24:1–3.  https://doi.org/10.7325/Galemys.2012.N08 CrossRefGoogle Scholar
  4. Barros T. (2009) Estatuto e distribuição do sacarrabos (Herpestes ichneumon) em Portugal. MsC Thesis, Universidade de AveiroGoogle Scholar
  5. Barros T, Fonseca C (2011) Expansão do sacarrabos Herpestes ichneumon (Linnaeus , 1758 ) em Portugal. Galemys 23:9–15Google Scholar
  6. Barros T, Carvalho J, Pereira MJR, Ferreira JP, Fonseca C (2015) Following the trail: factors underlying the sudden expansion of the Egyptian mongoose (Herpestes ichneumon) in Portugal. PLoS One 10:1–18.  https://doi.org/10.1371/journal.pone.0133768 CrossRefGoogle Scholar
  7. Barros T, Cushman SA, Carvalho J, Fonseca C (2016a) Mediterranean scrubland and elevation drive gene flow of a Mediterranean carnivore, the Egyptian mongoose Herpestes ichneumon (Herpestidae). Biol J Linn Soc Lond.  https://doi.org/10.1111/bij.12867
  8. Barros T, Ferreira E, Rocha RG, Gaubert P, Bandeira V, Souto L, Mira A, Fonseca C (2016b) Genetic signature of the northward expansion of the Egyptian mongoose Herpestes ichneumon (Herpestidae) in the Iberian Peninsula. Biol J Linn Soc Lond 118(3):686–697.  https://doi.org/10.1111/bij.12743 CrossRefGoogle Scholar
  9. Barros T, Gaubert P, Rocha RG, Bandeira V, Souto L, Mira A, Fonseca C (2016c) Mitochondrial demographic history of the Egyptian mongoose (Herpestes ichneumon), an expanding carnivore in the Iberian Peninsula. Mamm Biol 81:176–184CrossRefGoogle Scholar
  10. Bialozyt R, Ziegenhagen B, Petit RJ (2006) Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J Evol Biol 19:12–20.  https://doi.org/10.1111/j.1420-9101.2005.00995.x CrossRefPubMedGoogle Scholar
  11. Bothwell HM, Cushman SA, Woolbright SA, Hersch-Green EI, Evans LM, Whitham TG, Allan GJ (2017) Conserving threatened riparian ecosystems in the American west: precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol 26:5114–5132.  https://doi.org/10.1111/mec.14281 CrossRefPubMedGoogle Scholar
  12. Bronnenhuber JE, Dufour BA, Higgs DM, Heath DD (2011) Dispersal strategies, secondary range expansion and invasion genetics of the nonindigenous round goby, Neogobius melanostomus, in Great Lakes tributaries. Mol Ecol 20:1845–1859.  https://doi.org/10.1111/j.1365-294X.2011.05030.x CrossRefPubMedGoogle Scholar
  13. Brown JE, Stepien CA (2008) Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns. Mol Ecol 18:64–79.  https://doi.org/10.1111/j.1365-294X.2008.04014.x CrossRefGoogle Scholar
  14. Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23(4):843–856.  https://doi.org/10.1111/mec.12650 CrossRefPubMedGoogle Scholar
  15. Chambers JL, Garant D (2010) Determinants of population genetic structure in eastern chipmunks (Tamias striatus): the role of landscape barriers and sex-biased dispersal. J Hered 101:413–422.  https://doi.org/10.1093/jhered/esq029 CrossRefPubMedGoogle Scholar
  16. Clobert J (2012) Dispersal ecology and evolution. Oxford University Press, OxfordCrossRefGoogle Scholar
  17. Clobert J, Dhont AA, Nichols JD (2001) Dispersal. Oxford University Press, OxfordGoogle Scholar
  18. Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799.  https://doi.org/10.1111/j.1523-1739.2007.00674.x CrossRefPubMedGoogle Scholar
  19. Cushman SA (2015) Pushing the envelope in genetic analysis of species invasion. Mol Ecol 24:259–262.  https://doi.org/10.1111/mec.13043 CrossRefPubMedGoogle Scholar
  20. Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979.  https://doi.org/10.1007/s10980-010-9467-0 CrossRefGoogle Scholar
  21. Cushman SA, Landguth EL (2012) Multi-taxa population connectivity in the northern Rocky Mountains. Ecol Model 231:101–112.  https://doi.org/10.1016/j.ecolmodel.2012.02.011 CrossRefGoogle Scholar
  22. Cushman SA, Lewis JS (2010) Movement behavior explains genetic differentiation in American black bears. Landsc Ecol 25:1613–1625.  https://doi.org/10.1007/s10980-010-9534-6 CrossRefGoogle Scholar
  23. Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499.  https://doi.org/10.1086/506976 CrossRefPubMedGoogle Scholar
  24. Cushman SA, McRae B, Adriaensen F, Beier P, Shirley M, & Zeller K (2013) Biological corridors and connectivity [Chapter 21]. In: Macdonald DW, Willis KJ (eds) Key Topics in Conservation Biology 2. Wiley-Blackwell, Hoboken, NJ, p 384–404Google Scholar
  25. Cushman SA, Lewis JS, Landguth EL (2014) Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods. Diversity 6:844–854.  https://doi.org/10.3390/d6040844 CrossRefGoogle Scholar
  26. Cushman SA, Elliot NB, Macdonald DW, Loveridge AJ (2016) A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc Ecol 31:1337–1353.  https://doi.org/10.1007/s10980-015-0292-3 CrossRefGoogle Scholar
  27. Darling JA, Folino-Rorem NC (2009) Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes. Mol Ecol 18:4827–4840.  https://doi.org/10.1111/j.1365-294X.2009.04405.x CrossRefPubMedGoogle Scholar
  28. Delibes M (1982) Notas sobre la distribución pasada y actual del meloncillo Her-pestes ichneumon (L.) en la Península Ibérica. Doñana Acta Vertebr 8:341–352Google Scholar
  29. Detry C, Bicho N, Fernandes H, Fernandes C (2011) The emirate of Córdoba (756–929 AD) and the introduction of the Egyptian mongoose (Herpestes ichneumon) in Iberia: the remains from Muge, Portugal. J Archaeol Sci 38:3518–3523.  https://doi.org/10.1016/j.jas.2011.08.014 CrossRefGoogle Scholar
  30. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271CrossRefGoogle Scholar
  31. Dobson M (1998) Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Rev 28:77–88CrossRefGoogle Scholar
  32. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188.  https://doi.org/10.1111/j.1365-294X.2007.03659.x CrossRefPubMedGoogle Scholar
  33. Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet JM (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, Bufo marinus. Evol 58:2021–2036.  https://doi.org/10.1111/j.0014-3820.2004.tb00487.x CrossRefGoogle Scholar
  34. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  35. Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351.  https://doi.org/10.1016/j.tree.2008.04.004 CrossRefPubMedGoogle Scholar
  36. Excoffier L, Foll M, Petit R (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol 40:481–501.  https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 CrossRefGoogle Scholar
  37. Gaubert P, Machordom A, Morales A, López-Bao JV, Veron G, Amin M, Barros T, Basuony M, Djagoun C, San E, Fonseca C, Geffen E, Gouichiche M, Ozkurt S, Cruaud C, Couloux A, Palomares F (2011) Comparative phylogeography of two African carnivorans presumably introduced into Europe: disentangling natural versus human-mediated dispersal across the strait of Gibraltar. J Biogeogr 38:341–358.  https://doi.org/10.1111/j.1365-2699.2010.02406.x CrossRefGoogle Scholar
  38. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467.  https://doi.org/10.1111/j.1461-0248.2005.00739.x CrossRefGoogle Scholar
  39. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32.  https://doi.org/10.1016/j.biocon.2008.10.006 CrossRefGoogle Scholar
  40. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913CrossRefGoogle Scholar
  41. Kadoya T, Washitani I (2010) Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris) using a stochastic spatio-temporal model. Biol Conserv 143:1228–1235.  https://doi.org/10.1016/j.biocon.2010.02.030 CrossRefGoogle Scholar
  42. Kaszta Ż, Cushman SA, Sillero-Zubiri C, Wolff E, Marino J (2018) Where buffalo and cattle meet: modelling interspecific contact risk using cumulative resistant kernels. Ecography 41(10):1616–1626CrossRefGoogle Scholar
  43. Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35:9–14.  https://doi.org/10.1111/j.1600-0587.2011.07149.x CrossRefGoogle Scholar
  44. Lubina J, Levin S (1988) The spread of a reinvading species: range expansion in the California Sea otter. Am Nat 131:526–543.  https://doi.org/10.1086/284804 CrossRefGoogle Scholar
  45. Macdonald EA, Cushman SA, Landguth EL, Hearn AJ, Malhi Y, Macdonald DW (2018) Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS One 13(9):e0196974CrossRefGoogle Scholar
  46. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  47. Moqanaki EM, Cushman SA (2016) All roads lead to Iran: predicting landscape connectivity of the last stronghold for the critically endangered Asiatic cheetah. Anim Conserv 20:29–41.  https://doi.org/10.1111/acv.12281 CrossRefGoogle Scholar
  48. Nichols R, Hewitt G (1994) The genetic consequences of long distance dispersal during colonization. Heredity 72:312–317CrossRefGoogle Scholar
  49. Palomares F (1993) Mamíferos Ibéricos. Meloncillo Herpestes ichneumon (Linnaeus, 1758). Boletín Informativo SECEM 3:4–8Google Scholar
  50. Palomares F, Delibes M (1991) Ecología comparada de la gineta Genetta genetta (L.) y el meloncillo Herpestes ichneumon (L.) (Mammalia, Viverridae) en Doñana (SO de la Península Ibérica). Bol R Soc Esp Hist Nat Secc Biol 87:257–266Google Scholar
  51. Palomares F, Delibes M (1993a) Key habitat for Egyptian mongoose in Doñana National Park, South-Western Spain. J Appl Ecol 30:752–758CrossRefGoogle Scholar
  52. Palomares F, Delibes M (1993b) Resting ecology and behaviour of Egyptian mongooses (Herpestes ichneumon) in southwestern Spain. J Zool 230:557–566CrossRefGoogle Scholar
  53. Palomares F, Delibes M (1998) Meloncillo, una mangosta fuera de sitio. Biológica 17:52–56Google Scholar
  54. Parisod C, Bonvin G (2008) Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity (Edinb) 101:536–542.  https://doi.org/10.1038/hdy.2008.95 CrossRefGoogle Scholar
  55. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research – an update. Bioinf 28:2537–2539.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  56. Puyravaud JP, Cushman SA, Davidar P, Madappa D (2016) Predicting landscape connectivity for the Asian elephant in its largest remaining subpopulation. Anim Conserv 20:1–10.  https://doi.org/10.1111/acv.12314 CrossRefGoogle Scholar
  57. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  58. Rodrigues M, Fernandes CA, Palomares F, Amorim IR, Bruford MW, Santos-Reis M (2009) Isolation and characterization of 11 tetranucleotide microsatellite loci in the Egyptian mongoose (Herpestes ichneumon). Mol Ecol Resour 9:1205–1208.  https://doi.org/10.1111/j.1755-0998.2009.02624.x CrossRefPubMedGoogle Scholar
  59. Rodrigues DC, Simões L, Mullins J, Lampa S, Mendes RC, Fernandes C, Rebelo C, Santos-Reis M (2014) Tracking the expansion of the American mink (Neovison vison) range in NW Portugal. Biol Invasions 17:13–22.  https://doi.org/10.1007/s10530-014-0706-1 CrossRefGoogle Scholar
  60. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  61. Scheidt SN, Hurlbert AH (2014) Range expansion and population dynamics of an invasive species: the eurasian collared-dove (Streptopelia decaocto). PLoS One 9:18–20.  https://doi.org/10.1371/journal.pone.0111510 CrossRefGoogle Scholar
  62. Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619CrossRefGoogle Scholar
  63. Short KH, Petren K (2011) Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS One 6:e26258.  https://doi.org/10.1371/journal.pone.0026258 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shumway N, Seabrook L (2015) The use of senate inquiries for threatened species conservation. EMR 16:196–198.  https://doi.org/10.1111/emr.12178 CrossRefGoogle Scholar
  65. Swenson JE, Sandegren F, Söderberg A (1998) Geographic expansion of an increasing brown bear population: evidence for presaturation dispersal. J Anim Ecol 67:819–826.  https://doi.org/10.1046/j.1365-2656 CrossRefGoogle Scholar
  66. Talegón J, Parody FJC (2009) Datos sobre la presencia reciente y actual del Meloncillo Herpestes ichneumon (Linnaeus , 1758 ) en la provincia de Zamora (NO de España). Galemys 21:65–70Google Scholar
  67. Urban M, Phillips BL, Skelly DK, Shine R (2007) The cane toad's (Chaunus marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc R Soc Lond B: Biol Sci 27:1413–1419.  https://doi.org/10.1098/rspb.2007.0114 CrossRefGoogle Scholar
  68. Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell JS (2012) Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landsc Ecol 27:211–225.  https://doi.org/10.1007/s10980-011-9653-8 CrossRefGoogle Scholar
  69. White PCL, Jennings NV, Renwick AR, Barker NHL (2005) Questionnaires in ecology: a review of past use and recommendations for best practice. J Appl Ecol 42:421–430.  https://doi.org/10.1111/j.1365-2664.2005.01032.x CrossRefGoogle Scholar
  70. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203.  https://doi.org/10.1046/j.1523-1739.2002.01064.x CrossRefGoogle Scholar
  71. Zenger KR, Richardson BJ, Vachot-Griffin AM (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol Ecol 12:789–794.  https://doi.org/10.1046/j.1365-294X.2003.01759.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biologia and Centro de Estudos do Ambiente e do Mar (CESAM)Universidade de Aveiro, Campus Universitário SantiagoAveiroPortugal
  2. 2.Wildlife Ecology and Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia AnimalsUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.US Forest Service, Rocky Mountain Research StationFlagstaffUSA

Personalised recommendations