Advertisement

Distribution of the elusive and threatened Brazilian dwarf brocket deer refined by non-invasive genetic sampling and distribution modelling

  • Márcio Leite de OliveiraEmail author
  • Hilton Thadeu Zarate do Couto
  • José Maurício Barbanti Duarte
Original Article
  • 14 Downloads

Abstract

The Brazilian dwarf brocket deer (Mazama nana; Mammalia: Cervidae) is an elusive deer species that occupies the forests of southern Brazil, northern Argentina, and eastern Paraguay. A drastic reduction in forested areas has greatly affected the species, the least studied Neotropical deer. As do many threatened and elusive species, the Brazilian dwarf brocket deer needs a refinement of its distribution that would indicate proper sites to guide its conservation in situ. This project aimed to determine species distribution in order to establish priority areas for conservation. Given the rarity and elusiveness of the species, we proposed indirect methods to achieve this objective. We tracked and collected faecal samples in protected areas spread over southern Brazil with the help of a scat detection dog. Following species identification by PCR/RFLP and sample spatialisation, we modelled the species distribution using MaxEnt software. We found that the potential geographical distribution of the Brazilian dwarf brocket deer in Brazil is spread over the states of Paraná, Santa Catarina, northern and central Rio Grande do Sul, the extreme south of São Paulo and Mato Grosso do Sul, eastern Paraguay, and the Misiones province in Argentina. The west and centre of Paraná state and part of western Santa Catarina state were identified as high conservation priority areas.

Keywords

Cytochrome b Faecal DNA Mazama nana Scat detection dog Maximum entropy modelling 

Notes

Acknowledgements

The authors would like to thank Carlos Brocardo, Cíntia Gruener, Alexandre Vogliotti, Hugo Morzele, Paulo Kuester, Edson Abreu Jr., Pedro Volkmer de Castilho, Simone Michelon, Júlia Ferrúa dos Santos, Jorge Cherem, and Gabriela Mette for providing georeferenced records, as well as João Airton Boer for his work in the molecular genetics laboratory. This research was authorised by the following environmental agencies: the Chico Mendes Institute for Biodiversity Conservation (ICMBio; SISBio: 32972-4), the Santa Catarina Environmental Foundation (FATMA), the Environmental Institute of Paraná (IAP; 394-12), the State Environmental Secretary of Rio Grande do Sul (12/2012-DUC), the Riograndense Sanitation Company (Corsan), and the Joinvile Municipal Environmental Foundation (FUNDEMA; 10/12-GEMAP).

Funding information

This research was financed by the São Paulo Research Foundation (FAPESP; 12/50206-1). M. L. Oliveira received grants from FAPESP (15/25742-5, 12/01095-2) and the National Council for Scientific and Technological Development (CNPq).

Supplementary material

10344_2019_1258_MOESM1_ESM.docx (168 kb)
ESM 1 (DOCX 168 kb)

References

  1. Abril VV, Vogliotti A, Varela DM et al (2010) Brazilian dwarf brocket deer Mazama nana (Hensel 1872). In: Duarte JMB, González S (eds) Neotropical cervidology. Funep, Jaboticabal, pp 160–165Google Scholar
  2. Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866.  https://doi.org/10.3390/e11040854 CrossRefGoogle Scholar
  3. Bello J, Reyna R, Schipper J (2016) Mazama temama. The IUCN Red List of Threatened Species 2016: e.T136290A22164644.  https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T136290A22164644.en. Downloaded on 11 October 2018
  4. Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-Vandillen PME (1990) Rapid and simple methods for purification of nucleic acids. J Clin Microbiol 3:495–503Google Scholar
  5. Bosso L, Mucedda M, Fichera G, Kiefer A, Russo D (2016) A gap analysis for threatened bat populations on Sardinia. Hystrix, Ital J Mammal 27(2)Google Scholar
  6. Cabrera A (1960) Catálogo de los mamíferos de America del Sur. La Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Zoologia 4:309–732Google Scholar
  7. Chébez JC, Varela DM (2001) Corzuela enana. In: Dellafiore CM, Macieira N (eds) Los ciervos autóctonos de la Argentina. Buenos Aires, GAC, pp 51–56Google Scholar
  8. Cuyckens GAE, Pereira JA, Trigo TC, Da Silva M, Gonçalves L, Huaranca JC, Bou Peres N, Cartes JL, Eizirik E (2016) Refined assessment of the geographic distribution of Geoffroy’s cat (Leopardus geoffroyi)(Mammalia: Felidae) in the Neotropics. J Zool 298(4):285–292CrossRefGoogle Scholar
  9. Duarte JMB (1996) Guia de identificação de cervídeos brasileiros. Funep, JaboticabalGoogle Scholar
  10. Duarte JMB (1998) Análise citogenética e taxonômica do gênero Mazama (Cervidae; Artiodactyla) no Brasil. Dissertation, São Paulo State UniversityGoogle Scholar
  11. Duarte JMB, Vogliotti A (2016) Mazama americana. The IUCN Red List of Threatened Species 2016: e.T29619A22154827.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29619A22154827.en. Downloaded on 11 October 2018
  12. Duarte JMB, Vogliotti A, Cartes JL, Oliveira ML (2015) Mazama nana. The IUCN Red List of Threatened Species.  https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T29621A22154379.en
  13. Duarte JMB, Talarico AC, Vogliotti A, Garcia JE, Oliveira ML, Maldonado JE, González S (2017) Scat detection dogs, DNA and species distribution modelling reveal a diminutive geographical range for the vulnerable small red brocket deer Mazama bororo. Oryx 51:656–664.  https://doi.org/10.1017/S0030605316000405 CrossRefGoogle Scholar
  14. Duckworth JW, Timmins R, Semiadi G (2015). Tragulus javanicus. The IUCN Red List of Threatened Species 2015: e.T41780A61978138.  https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T41780A61978138.en. Downloaded on 11 October 2018
  15. Eisenberg JF, Redford KH (1999) Mammals of the Neotropics: the central Neotropics. The University of Chicago Press, ChicagoGoogle Scholar
  16. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151.  https://doi.org/10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  17. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.  https://doi.org/10.1017/S0376892997000088 CrossRefGoogle Scholar
  18. Fleury M, Galetti M (2006) Forest fragment size and microhabitat effects on palm seed predation. Biol Conserv 131(1):1–13CrossRefGoogle Scholar
  19. González S, Maldonado JE, Ortega J et al (2009) Identification of the endangered small red brocket deer (Mazamabororo) using noninvasive genetic techniques (Mammalia; Cervidae). Mol Ecol Resour 9:754–758.  https://doi.org/10.1111/j.1755-0998.2008.02390.x CrossRefPubMedGoogle Scholar
  20. Grubb P (1990) List of deer species and subspecies. Deer 8:153–155Google Scholar
  21. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  22. Hansen M, Defries RS, Townshend JRG et al (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7:1–15.  https://doi.org/10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 CrossRefGoogle Scholar
  23. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  24. Instituto Brasileiro de Geografia e Estatística (IBGE) (1992) Mapa de vegetação do Brasil. Rio de JaneiroGoogle Scholar
  25. International Union for Conservation of Nature (IUCN) (2014) Guidelines for application of IUCN Red List criteria at regional and national levels: version 4.0. GlandGoogle Scholar
  26. Khadka KK, James DA (2017) Modeling and mapping the current and future climatic-niche of endangered Himalayan musk deer. Ecol Inform 40:1–7.  https://doi.org/10.1016/j.ecoinf.2017.04.009 CrossRefGoogle Scholar
  27. Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12:223–227.  https://doi.org/10.1016/S0169-5347(97)01050-1 CrossRefPubMedGoogle Scholar
  28. Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond B Biol Sci 266:657–663.  https://doi.org/10.1098/rspb.1999.0686 CrossRefGoogle Scholar
  29. Marini MA, Barbet-Massin M, Lopes LE, Jiguet F (2010) Predicting the occurrence of rare Brazilian birds with species distribution models. J Ornithol 151(4):857–866CrossRefGoogle Scholar
  30. Oliveira ML, Duarte JMB (2013) Amplifiability of mitochondrial, microsatellite and amelogenin DNA loci from fecal samples of red brocket deer Mazama americana (Cetartiodactyla, Cervidae). Genet Mol Res 12:44–52.  https://doi.org/10.4238/2013.January.16.8 CrossRefPubMedGoogle Scholar
  31. Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412.  https://doi.org/10.1111/j.1365-2664.2005.01112.x CrossRefGoogle Scholar
  32. Pearson RG (2007) Species’ distribution modeling for conservation educators and practitioners: synthesis. American Museum of Natural History. http://ncep.amnh.org. Accessed 12 March 2012
  33. Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31:161–175.  https://doi.org/10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  34. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. International Conference on Machine Learning, ACM Press, New York, pp 655–662Google Scholar
  35. Phillips SJ, Anderson RP, Schapired RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  36. Rodriguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distributions 13:243–251.  https://doi.org/10.1111/j.1472-4642.2007.00356.x CrossRefGoogle Scholar
  37. Rossi RV (2000) Taxonomia de Mazama Rafinesque, 1817 do Brasil (Artiodactyla, Cervidae). Dissertation, University of São PauloGoogle Scholar
  38. Smith DA, Ralls K, Davenport B et al (2001) Canine assistants for conservationists. Science 291:435–4435.  https://doi.org/10.1126/science.291.5503.435B CrossRefPubMedGoogle Scholar
  39. Souza JN, Oliveira ML, Duarte JMB (2013) A PCR/RFLP methodology to identify non-Amazonian Brazilian deer species. Conserv Genet Resour 5:639–641.  https://doi.org/10.1007/s12686-013-9870-3 CrossRefGoogle Scholar
  40. Timmins R, Duckworth JW (2016a) Muntiacus gongshanensis. The IUCN Red List of Threatened Species 2016: e.T13926A22160596.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T13926A22160596.en. Downloaded on 11 October 2018
  41. Timmins R, Duckworth JW (2016b). Muntiacus rooseveltorum. The IUCN Red List of Threatened Species 2016: e.T13928A22160435.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T13928A22160435.en. Downloaded on 11 October 2018
  42. Timmins R, Duckworth JW (2016c) Muntiacus truongsonensis. The IUCN Red List of Threatened Species 2016: e.T44704A22154056.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T44704A22154056.en. Downloaded on 11 October 2018
  43. Timmins R, Duckworth JW, Meijaard E (2015). Tragulus williamsoni. The IUCN Red List of Threatened Species 2015: e.T136533A61978926.  https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T136533A61978926.en. Downloaded on 11 October 2018
  44. Timmins R, Steinmetz R, Chutipong W (2016) Muntiacus feae. The IUCN Red List of Threatened Species 2016: e.T13927A22160266.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T13927A22160266.en. Downloaded 11 Oct 2018
  45. Valeriano MM (2008) TOPODATA: guia de utilização de dados geomorfométricos locais. INPE (National Institute of Space Research) http://www.dsr.inpe.br/topodata/. Accessed 17 May 2012
  46. VanDerWal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174(2):282–291CrossRefGoogle Scholar
  47. Vieira CC (1955) Lista remissiva dos mamíferos do Brasil. Arq Zool 8:458–464Google Scholar
  48. Vogliotti A (2003) História natural de Mazama bororo (Artiodactyla; Cervidae) através da etnozoologia, monitoramento fotográfico e radiotelemetria. Dissertation, University of São PauloGoogle Scholar
  49. Vogliotti A (2008) Partição de hábitats entre os cervídeos no Parque Nacional do Iguaçu. Dissertation, University of São PauloGoogle Scholar
  50. Ximenes AC (2008) Mapas auto-organizáveis para a identificação de ecorregiões do interflúvio Madeira-Purus: uma abordagem da biogeografia ecológica. Dissertation. National Institute of Space ResearchGoogle Scholar
  51. Yañez-Arenas C, Martínez-Meyer E, Mandujano S, Octavio R-S (2012) Modelling geographic patterns of population density of the white-tailed deer in central Mexico by implementing ecological niche theory. Oikos 121:2081–2089.  https://doi.org/10.1111/j.1600-0706.2012.20350.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Deer Research and Conservation Centre (NUPECCE), School of Agricultural and Veterinary SciencesSão Paulo State UniversitySão PauloBrazil
  2. 2.Forest Sciences Department, Luiz de Queiroz College of AgricultureUniversity of São PauloSão PauloBrazil

Personalised recommendations