Advertisement

Assessment of relative mortality rates for two rapidly declining farmland owls in the Czech Republic (Central Europe)

  • Martin ŠálekEmail author
  • Karel Poprach
  • Libor Opluštil
  • David Melichar
  • Jakub Mráz
  • Radovan Václav
Original Article

Abstract

Anthropogenic mortality has a considerable impact on populations of long-lived species, such as raptors, which increasingly inhabit human-dominated landscapes. Here, we analyzed long-term mortality data for two rapidly declining owls, Little Owl Athene noctua and Barn Owl Tyto alba, in the Czech Republic. We evaluated relative mortality rates with respect to owl age, month of carcass recovery, and two time periods (before and after year 2000). We examined 961 mortality records (199 Little Owls and 762 Barn Owls) derived from six distinct database sources totally spanning the period of years 1934–2017 and the entire Czech Republic. Natural causes, entrapment in vertical hollow objects and drowning in liquid reservoirs (entrapment), and collision with vehicles accounted for the highest proportion of mortality cases in Little Owl, while collision with vehicles and entrapment represented the most important mortality sources in Barn Owl. Relative mortality rates in Little Owl caused by entrapment, non-vehicle collision, electrocution at power lines and confinement in buildings increased after the year 2000. In turn, the relative mortality rate due to collision with vehicles increased after 2000 in Barn Owl. Persecution, collision with vehicles, and entrapment accounted for higher relative mortality rates in first-year than adult Little Owls. In Barn Owls, higher relative mortality rates due to collision with vehicles and entrapment were detected in adult compared to first-year birds. Finally, relative mortality rates differed between age classes according to the month of carcass recovery for both species. For Little Owl, the highest relative mortality rates in first-year individuals were detected during July and September, whereas adult Little Owls suffered the highest relative mortality rates during March, November and December. In Barn Owls, the relative mortality rates of first-year individuals peaked in November and December, whereas adult birds suffered the highest relative mortality rate during July, January and February. This study strongly suggests that reducing the risk of anthropogenic mortality may be crucial to halt the decline of Little Owl and Barn Owl populations.

Keywords

Urbanization Anthropogenic mortality Entrapment Traffic Seasonal changes Population decline Mitigation measures Little Owl Barn Owl 

Notes

Acknowledgments

We would like to thank Jaroslav Cepák (Bird Ringing Centre, National Museum Prague), Zdeňka Nezmeškalová (Czech Union for Nature Conservation) for assistance with accessing the ringing records or data from rescue centers in the Czech Republic. We are very grateful to all ringers and members of “Working group on protection and research of birds of prey and owls in the Czech Republic”, especially Libor Schröpfer, Karel Makoň, Petr Berka, Miroslav Bažant, František Krause and Jiří Vlček for providing data. We also would like to thank Ronald van Harxen for providing photos of Little Owl mortality and David H. Johnson for correcting the English. Two anonymous reviewers provided helpful comments on early drafts of the manuscript. This work was supported by the research aim of The Czech Academy of Sciences (RVO 68081766).

Supplementary material

10344_2019_1253_MOESM1_ESM.xlsx (30 kb)
ESM 1 (XLSX 29 kb)
10344_2019_1253_MOESM2_ESM.docx (645 kb)
ESM 2 (DOCX 644 kb)
10344_2019_1253_MOESM3_ESM.docx (117 kb)
ESM 3 (DOCX 116 kb)

References

  1. Anderson MD, Maritz AWA, Oosthuysen E (1999) Raptors drowning in farm reservoirs in South Africa. Ostrich 70(2):139–144CrossRefGoogle Scholar
  2. Arnold EM, Hanser SE, Regan T, Thompson J, Lowe M, Kociolek A, Belthoff JR (2018) Spatial, road geometric and biotic factors associated with Barn Owl mortality along an interstate highway. Ibis 161:147–161.  https://doi.org/10.1111/ibi.12593 CrossRefGoogle Scholar
  3. August P, Iverson L, Nugranad J (2002) Human conversion of terrestrial habitats. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York, pp 198–224CrossRefGoogle Scholar
  4. Barn Owl Trust (2012) Barn Owl conservation handbook. Pelagic, ExeterGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  6. Boves TJ, Belthoff JR (2012) Roadway mortality of barn owls in Idaho, USA. J Wildl Manag 76:1381–1392CrossRefGoogle Scholar
  7. Bultot J, Marié P, van Nieuwenhuyse D (2001) Population dynamics of Little Owl Athene noctua in Wallonia and its driving forces. Evidence for density-dependence. Oriolus 67:88–93Google Scholar
  8. Calvert AM, Bishop CA, Elliot RD, Krebs EA, Kydd TM, Machtans CS, Robertson GJ (2013) A synthesis of human-related avian mortality in Canada. Avian Conserv Ecol 8:11Google Scholar
  9. Cepák J, Klvaňa P, Formánek J, Horák D, Jelínek M, Schröpfer L, Škopek J, Zárybnický J (2008) Atlas migrace ptáků České republiky a Slovenska (Czech and Slovak Bird Migration Atlas). Aventinum, Praha (in Czech with English summary)Google Scholar
  10. Chrenková M, Dobrý M, Šálek M (2017) Further evidence of large-scale population decline and range contraction of the Little Owl Athene noctua in Central Europe. Folia Zool 66:106–116CrossRefGoogle Scholar
  11. Cikánková J, Koblížková E, Mertl J, Pokorný J, Ponocná T, Rollerová M, Vlčková V (2014) Zpráva o životním prostředí České republiky 2014 (Report on the Environment of the Czech Republic 2014). Cenia, MŽP, Czech Republic. (in Czech)Google Scholar
  12. Clech D (1993) La Chouette chevêche Athene noctua en Bretagne. Ar Vran 4:5–34 (in French)Google Scholar
  13. Craig TH, Powers LR (1976) Raptor mortality due to drowning in a livestock watering tank. Condor 78:412CrossRefGoogle Scholar
  14. de Bruijn O (1994) Population ecology and conservation of the Barn Owl Tyto alba in farmland habitats in Liemers and Achterhoek (The Netherlands). Ardea 82:1–109Google Scholar
  15. de Jong J, van den Burg A, Liosi A (2018) Determinants of traffic mortality of Barn Owls (Tyto alba) in Friesland, The Netherlands. Avian Conserv Ecol 13(2):2CrossRefGoogle Scholar
  16. Dicks LV, Ashpole JE, Dänhardt J, James K, Jönsson AM, Randall N, Showler DA, Smith RK, Turpie S, Williams D, Sutherland WJ (2014) Farmland conservation: evidence or the effects of interventions in northern and western Europe. Pelagic, ExeterGoogle Scholar
  17. Diviš T (2005) Rešerše a hodnocení realizovaných a probíhajících projektů aktivní ochrany sýčka obecného (Athene noctua) v České republice. In: Kumstátová T, Nová P, Marhoul P (eds) Hodnoceni projektů aktivní podpory ohrožených živočichů v České republice. Czech Republic, Praha, pp 309–324Google Scholar
  18. Ellis DH, Roundy TB, Ellis CH (2010) Raptor pit mortality in Mongolia and a call to identify and modify death traps wherever they occur. Ambio 39:349–351CrossRefGoogle Scholar
  19. Exo KM, Hennes R (1980) Beitrag zur Populationsökologie des Steinkauzes (Athene noctua) – eine Analyse deutscher und niederländischer Ringfunde. Die Vogelwarte 30:162–179Google Scholar
  20. Fajardo I (2001) Monitoring of non-natural mortality in the Barn Owl (Tyto alba), as an indicator of land use and social awareness in Spain. Biol Conserv 97:143–149CrossRefGoogle Scholar
  21. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  22. Glue DE (1971) Ringing recovery circumstances of small birds of prey. Bird Study 18(3):137–146CrossRefGoogle Scholar
  23. González LM, Margalida A, Mañosa S, Sánchez R, Oria J, Molina JI, Caldera J, Aranda A, Prada L (2007) Causes and spatio-temporal variations of non-natural mortality in the vulnerable Spanish Imperial eagle (Aquila adalberti) during a recovery period. Oryx 41:495–502CrossRefGoogle Scholar
  24. Grilo C, Sousa J, Ascensão F, Matos H, Leitão I, Pinheiro P, Costa M, Bernardo J, Reto D, Lourenço R, Santos-Reis M, Revilla E (2012) Individual spatial responses towards roads: implications for mortality risk. PLoS One 7:e43811CrossRefGoogle Scholar
  25. Grilo C, Reto D, Filipe J, Ascensão F, Revilla E (2014) Understanding the mechanisms behind road effects: linking occurrence with road mortality in owls. Anim Conserv 17:555–564CrossRefGoogle Scholar
  26. Haddad NM, Brudving LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci Adv 1(2):e1500052CrossRefGoogle Scholar
  27. Hernandez M (1988) Road mortality of the Little owl (Athene noctua) in Spain. J Raptor Res 22:81–84Google Scholar
  28. Hindmarch S, Elliott JE, Mccann S, Levesque P (2017) Habitat use by Barn Owls across a rural to urban gradient and an assessment of stressors including, habitat loss, rodenticide exposure and road mortality. Landsc Urban Plan 164:132–143CrossRefGoogle Scholar
  29. Kokko H (2001) Optimal and suboptimal use of compensatory responses to harvesting: timing of hunting as an example. Wildl Biol 7(1):141-150CrossRefGoogle Scholar
  30. Le Gouar PJ, Schekkerman H, van der Jeugd HP, Boele A, van Harxen R, Fuchs P, Stroeken P, van Noordwijk AJ (2011) Long-term trends in survival of a declining population: the case of the little owl (Athene noctua) in the Netherlands. Oecologia 166(2):369-379CrossRefGoogle Scholar
  31. Longcore TL, Smith PA (2013) On avian mortality associated with human activities. Avian Conserv. Ecol. 8:1Google Scholar
  32. López-López P, Ferrer M, Madero A, Casado E, McGrady M (2011) Solving man-induced large-scale conservation problems: the Spanish imperial eagle and power lines. PLoS One 6(3):e17196CrossRefGoogle Scholar
  33. Loss SR, Will T, Marra PP (2012) Direct human-caused mortality of birds: improving quantification of magnitude and assessment of population impact. Front Ecol Environ 10:357–364CrossRefGoogle Scholar
  34. Loss SR, Will T, Marra PP (2015) Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst 46:199–120CrossRefGoogle Scholar
  35. Machar I, Poprach K (2012) Nádrže na melasu v zemědělských podnicích jako ekologické pasti (Tanks and cisterns for fodder molasses on farms as ecological traps). Listy Cukrovarnické a Řepařské 128:347–349 (in Czech with English summary)Google Scholar
  36. Malo JE, García de la Morena EL, Hervás I, Mata C, Herranz J (2016) Uncapped tubular poles along high-speed railway lines act as pitfall traps for cavity nesting birds. Eur J Wildl Res 62:483–489CrossRefGoogle Scholar
  37. Martínez JA, Martínez JE, Mañosa S, Zuberogoitia I, Calvo F (2006) How to manage human-induced mortality in the Eagle Owl Bubo bubo. Bird Conserv Int 16:265–278CrossRefGoogle Scholar
  38. Massemin S, Le Maho Y, Handrich Y (1998) Seasonal patterns in age, sex, and body condition of Barn Owls Tyto alba killed on motorways. Ibis 140:70–75CrossRefGoogle Scholar
  39. Molina-López RA, Casal J, Darwich L (2011) Causes of morbidity in wild raptor populations admitted at a wildlife rehabilitation Centre in Spain from 1995–2007: a long term retrospective study. PLoS One 6(9):e24603CrossRefGoogle Scholar
  40. Mumme RL, Schoech SJ, Woolfenden GE, Fitzpatrick JW (2000) Life and death in the fast lane: demographic consequences of road mortality in the Florida scrub-jay. Conserv Biol 14:501–512CrossRefGoogle Scholar
  41. Naef-Daenzer B, Korner-Nievergelt F, Fiedler W, Grüebler MU (2017) Bias in ring-recovery studies: causes of mortality of little owls and implications for population assessment. J Avian Biol 48(2):266-274CrossRefGoogle Scholar
  42. Newton I, Wyllie I, Dale L (1997) Mortality causes in British Barn Owls Tyto alba based on 1,101 carcasses examined during 1963–1996. In: Duncan JR, Johnson DH, Nicholls TH (eds) Biology and conservation of owls of the Northern Hemisphere, Winnipeg, USA, pp 229–307Google Scholar
  43. Poprach K (2010) Sova pálená (The Barn Owl). TYTO, Nenakonice, Czech Republic. (in Czech with English summary)Google Scholar
  44. Poprach K (2017) Sova pálená (Barn Owl). Zpravodaj SOVDS 17:28–32 (in Czech with English summary)Google Scholar
  45. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  46. Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329:1298–1303CrossRefGoogle Scholar
  47. Šálek M, Lövy M (2012) Spatial ecology and habitat utilization of the Little Owl (Athene noctua) in Central European farmland. Bird Conserv Int 22:328–338CrossRefGoogle Scholar
  48. Šálek M, Schröpfer L (2008) Recent decline of the Little Owl (Athene noctua) in the Czech Republic. Pol J Ecol 56(3):527–534Google Scholar
  49. Šálek M, Riegert J, Křivan V (2010) The impact of vegetation characteristics and prey availability on breeding habitat use and diet of Little Owl (Athene noctua) in Central European farmland. Bird Study 57:495–503CrossRefGoogle Scholar
  50. Šálek M, Chrenková M, Kipson M (2013) High population density of little owl (Athene noctua) in Hortobagy National Park, Hungary, Central Europe. Pol J Ecol 61:165–169Google Scholar
  51. Šálek M (2014) Long-term population decline of the little owl (Athene noctua) in a core area of its distribution in Bohemia (Czech Republic). Sylvia 50:2–12 (in Czech with English summary) Google Scholar
  52. Šálek M, Chrenková M, Dobrý M, Kipson M, Grill S, Václav R (2016) Scale-dependent habitat associations of a rapidly declining farmland predator, the Little Owl Athene noctua, in contrasting agricultural landscapes. Agric Ecosyst Environ 224:56–66CrossRefGoogle Scholar
  53. Schaub M, Aebischer A, Gimenez O, Berger S, Arlettaz R (2010) Massive immigration balances high anthropogenic mortality in a stable eagle owl population: lessons for conservation. Biol Conserv 143:1911–1918CrossRefGoogle Scholar
  54. Sergio F, Marchesi L, Pedrini P, Ferrer M, Penteriani V (2004) Electrocution alters the distribution and density of a top predator, the eagle owl Bubo bubo. J Appl Ecol 41:836–845CrossRefGoogle Scholar
  55. Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice 2001–2003 (Atlas of breeding birds in the Czech Republic, 2001–2003). Aventinum, Praha, Czech Republic. (in Czech with English summary)Google Scholar
  56. Šťastný K, Bejček V, Němec M (2017) Červený seznam ptáků České republiky (The Red List of birds of the Czech Republic). Příroda (Praha) 34:107–154 (in Czech with English summary)Google Scholar
  57. Tattersall FH, Hart BJ, Manley WJ, Macdonald DW, Feber RE (1999) Small mammals on set-aside blocks and margins. Asp Appl Biol 54:131–138Google Scholar
  58. Thorup K, Pedersen D, Sunde P, Jacobsen LB, Rahbek C (2013) Seasonal survival rates and causes of mortality of Little Owls in Denmark. J Ornithol 154:183–190CrossRefGoogle Scholar
  59. van Nieuwenhuyse D, Génot JC, Johnson DH (2008) The Little Owl: conservation, ecology and behaviour of Athene noctua. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Czech Academy of SciencesInstitute of Vertebrate BiologyBrnoCzech Republic
  2. 2.Faculty of Environmental SciencesCzech University of Life Sciences PraguePragueCzech Republic
  3. 3.Czech Society of OrnithologyPragueCzech Republic
  4. 4.Faculty of Science, Department of Development and Environmental StudiesPalacký UniversityOlomoucCzech Republic
  5. 5.TYTO, z. sVěrovanyCzech Republic
  6. 6.Podolí 286Podolí u BrnaCzech Republic
  7. 7.Český svaz ochránců přírodyBřeclavCzech Republic
  8. 8.NýřanyCzech Republic
  9. 9.TřeboňCzech Republic
  10. 10.Slovak Academy of SciencesInstitute of ZoologyBratislavaSlovakia

Personalised recommendations